Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Fish Biol Fish ; 33(2): 317-347, 2023.
Article in English | MEDLINE | ID: mdl-37122954

ABSTRACT

A common goal among fisheries science professionals, stakeholders, and rights holders is to ensure the persistence and resilience of vibrant fish populations and sustainable, equitable fisheries in diverse aquatic ecosystems, from small headwater streams to offshore pelagic waters. Achieving this goal requires a complex intersection of science and management, and a recognition of the interconnections among people, place, and fish that govern these tightly coupled socioecological and sociotechnical systems. The World Fisheries Congress (WFC) convenes every four years and provides a unique global forum to debate and discuss threats, issues, and opportunities facing fish populations and fisheries. The 2021 WFC meeting, hosted remotely in Adelaide, Australia, marked the 30th year since the first meeting was held in Athens, Greece, and provided an opportunity to reflect on progress made in the past 30 years and provide guidance for the future. We assembled a diverse team of individuals involved with the Adelaide WFC and reflected on the major challenges that faced fish and fisheries over the past 30 years, discussed progress toward overcoming those challenges, and then used themes that emerged during the Congress to identify issues and opportunities to improve sustainability in the world's fisheries for the next 30 years. Key future needs and opportunities identified include: rethinking fisheries management systems and modelling approaches, modernizing and integrating assessment and information systems, being responsive and flexible in addressing persistent and emerging threats to fish and fisheries, mainstreaming the human dimension of fisheries, rethinking governance, policy and compliance, and achieving equity and inclusion in fisheries. We also identified a number of cross-cutting themes including better understanding the role of fish as nutrition in a hungry world, adapting to climate change, embracing transdisciplinarity, respecting Indigenous knowledge systems, thinking ahead with foresight science, and working together across scales. By reflecting on the past and thinking about the future, we aim to provide guidance for achieving our mutual goal of sustaining vibrant fish populations and sustainable fisheries that benefit all. We hope that this prospective thinking can serve as a guide to (i) assess progress towards achieving this lofty goal and (ii) refine our path with input from new and emerging voices and approaches in fisheries science, management, and stewardship.

2.
Ecol Appl ; 20(7): 1979-92, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21049884

ABSTRACT

Recent empirical studies have demonstrated that human activities such as fishing can strongly affect the natural capital and services provided by tropical seascapes. However, policies to mitigate anthropogenic impacts can also alter food web structure and interactions, regardless of whether the regulations are aimed at single or multiple species, with possible unexpected consequences for the ecosystems and their associated services. Complex community response to management interventions have been highlighted in the Caribbean, where, contrary to predictions from linear food chain models, a reduction in fishing intensity through the establishment of a marine reserve has led to greater biomass of herbivorous fish inside the reserve, despite an increased abundance of large predatory piscivores. This positive multi-trophic response, where both predators and prey benefit from protection, highlights the need to take an integrated approach that considers how numerous factors control species coexistence in both fished and unfished systems. In order to understand these complex relationships, we developed a general model to examine the trade-offs between fishing pressure and trophic control on reef fish communities, including an exploration of top-down and bottom-up effects. We then validated the general model predictions by parameterizing the model for a reef system in the Bahamas in order to tease apart the wide range of species responses to reserves in the Caribbean. Combining the development of general theory and site-specific models parameterized with field data reveals the underlying driving forces in these communities and enables us to make better predictions about possible population and community responses to different management schemes.


Subject(s)
Anthozoa/physiology , Fishes/physiology , Food Chain , Animals , Caribbean Region , Conservation of Natural Resources , Environmental Monitoring , Fisheries , Models, Biological , Population Dynamics
3.
Ecol Appl ; 17(4): 1039-54, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17555217

ABSTRACT

Throughout the world "fishing the line" is a frequent harvesting tactic in communities where no-take marine reserves are designated. This practice of concentrating fishing effort at the boundary of a marine reserve is predicated upon the principle of spillover, the net export of stock from the marine reserve to the surrounding unprotected waters. We explore the consequences and optimality of fishing the line using a spatially explicit theoretical model. We show that fishing the line: (1) is part of the optimal effort distribution near no-take marine reserves with mobile species regardless of the cooperation level among harvesters; (2) has a significant impact on the spatial patterns of catch per unit effort (CPUE) and fish density both within and outside of the reserve; and (3) can enhance total population size and catch simultaneously under a limited set of conditions for overexploited populations. Additionally, we explore the consequences of basing the spatial distribution of fishing effort for a multispecies fishery upon the optimality of the most mobile species that exhibits the greatest spillover. Our results show that the intensity of effort allocated to fishing the line should instead be based upon more intermediate rates of mobility within the targeted community. We conclude with a comparison between model predictions and empirical findings from a density gradient study of two important game fish in the vicinity of a no-take marine-life refuge on Santa Catalina Island, California (USA). These results reveal the need for empirical studies to account for harvester behavior and suggest that the implications of spatial discontinuities such as fishing the line should be incorporated into marine-reserve design.


Subject(s)
Fisheries , Animals , Fishes , Seawater , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...