Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Cancer ; 2(10): 1002-1017, 2021 10.
Article in English | MEDLINE | ID: mdl-34790902

ABSTRACT

DNA methylation, a key epigenetic driver of transcriptional silencing, is universally dysregulated in cancer. Reversal of DNA methylation by hypomethylating agents, such as the cytidine analogs decitabine or azacytidine, has demonstrated clinical benefit in hematologic malignancies. These nucleoside analogs are incorporated into replicating DNA where they inhibit DNA cytosine methyltransferases DNMT1, DNMT3A and DNMT3B through irreversible covalent interactions. These agents induce notable toxicity to normal blood cells thus limiting their clinical doses. Herein we report the discovery of GSK3685032, a potent first-in-class DNMT1-selective inhibitor that was shown via crystallographic studies to compete with the active-site loop of DNMT1 for penetration into hemi-methylated DNA between two CpG base pairs. GSK3685032 induces robust loss of DNA methylation, transcriptional activation and cancer cell growth inhibition in vitro. Due to improved in vivo tolerability compared with decitabine, GSK3685032 yields superior tumor regression and survival mouse models of acute myeloid leukemia.


Subject(s)
Azacitidine , Leukemia, Myeloid, Acute , Animals , Azacitidine/pharmacology , DNA/metabolism , DNA Methylation , DNA Modification Methylases/genetics , Decitabine/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Mice
2.
Sci Rep ; 8(1): 9711, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29946150

ABSTRACT

Evasion of the potent tumour suppressor activity of p53 is one of the hurdles that must be overcome for cancer cells to escape normal regulation of cellular proliferation and survival. In addition to frequent loss of function mutations, p53 wild-type activity can also be suppressed post-translationally through several mechanisms, including the activity of PRMT5. Here we describe broad anti-proliferative activity of potent, selective, reversible inhibitors of protein arginine methyltransferase 5 (PRMT5) including GSK3326595 in human cancer cell lines representing both hematologic and solid malignancies. Interestingly, PRMT5 inhibition activates the p53 pathway via the induction of alternative splicing of MDM4. The MDM4 isoform switch and subsequent p53 activation are critical determinants of the response to PRMT5 inhibition suggesting that the integrity of the p53-MDM4 regulatory axis defines a subset of patients that could benefit from treatment with GSK3326595.


Subject(s)
Nuclear Proteins/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Proto-Oncogene Proteins/metabolism , RNA Splicing/genetics , Tumor Suppressor Protein p53/metabolism , Alternative Splicing/genetics , Antineoplastic Agents , Arginine/analogs & derivatives , Arginine/metabolism , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Cycle Proteins , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Enzyme Inhibitors/pharmacology , Humans , Nuclear Proteins/genetics , Protein Isoforms/genetics , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Tumor Suppressor Protein p53/genetics , snRNP Core Proteins/metabolism
3.
Genome Res ; 25(11): 1600-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26275623

ABSTRACT

CpG islands (CGIs) are associated with over half of human gene promoters and are characterized by a unique chromatin environment and high levels of bidirectional transcriptional activity relative to surrounding genomic regions, suggesting that RNA polymerase (Pol II) progression past the CGI boundaries is restricted. Here we describe a novel transcriptional regulatory step wherein Pol II encounters an additional barrier to elongation distinct from the promoter-proximal pause and occurring at the downstream boundary of the CGI domain. For most CGI-associated promoters, Pol II exhibits a dominant pause at either the promoter-proximal or this distal site that correlates, both in position and in intensity, with local regions of high GC skew, a sequence feature known to form unique secondary structures. Upon signal-induced gene activation, long-range enhancer contacts at the dominant pause site are selectively enhanced, suggesting a new role for enhancers at the downstream pause. These data point to an additional level of control over transcriptional output at a subset of CGI-associated genes that is linked to DNA sequence and the integrity of the CGI domain.


Subject(s)
Base Composition , CpG Islands/genetics , Promoter Regions, Genetic , RNA Polymerase II/metabolism , Cell Line, Tumor , Chromatin/genetics , DNA Methylation , Genome, Human , Humans , MCF-7 Cells , Sequence Analysis, DNA , Transcriptional Activation
4.
Nucleic Acids Res ; 41(20): 9274-83, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23945939

ABSTRACT

Brd4 is a double bromodomain protein that has been shown to interact with acetylated histones to regulate transcription by recruiting Positive Transcription Elongation Factor b to the promoter region. Brd4 is also involved in gene bookmarking during mitosis and is a therapeutic target for the treatment of acute myeloid leukemia. The Drosophila melanogaster Brd4 homologue is called Fs(1)h and, like its vertebrate counterpart, encodes different isoforms. We have used ChIP-seq to examine the genome-wide distribution of Fs(1)h isoforms. We are able to distinguish the Fs(1)h-L and Fs(1)h-S binding profiles and discriminate between the genomic locations of the two isoforms. Fs(1)h-S is present at enhancers and promoters and its amount parallels transcription levels. Correlations between the distribution of Fs(1)h-S and various forms of acetylated histones H3 and H4 suggest a preference for binding to H3K9acS10ph. Surprisingly, Fs(1)h-L is located at sites in the genome where multiple insulator proteins are also present. The results suggest that Fs(1)h-S may be responsible for the classical role assigned to this protein, whereas Fs(1)h-L may have a new and unexpected role in chromatin architecture by working in conjunction with insulator proteins to mediate intra- or inter-chromosome interactions.


Subject(s)
Drosophila Proteins/metabolism , Enhancer Elements, Genetic , Insulator Elements , Promoter Regions, Genetic , Transcription Factors/metabolism , Animals , Cell Line , Drosophila melanogaster/genetics , Histones/metabolism , Protein Isoforms/metabolism , Transcription, Genetic
5.
Genome Res ; 22(6): 1081-8, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22508764

ABSTRACT

Transcription regulation is mediated by enhancers that bind sequence-specific transcription factors, which in turn interact with the promoters of the genes they control. Here, we show that the JIL-1 kinase is present at both enhancers and promoters of ecdysone-induced Drosophila genes, where it phosphorylates the Ser10 and Ser28 residues of histone H3. JIL-1 is also required for CREB binding protein (CBP)-mediated acetylation of Lys27, a well-characterized mark of active enhancers. The presence of these proteins at enhancers and promoters of ecdysone-induced genes results in the establishment of the H3K9acS10ph and H3K27acS28ph marks at both regulatory sequences. These modifications are necessary for the recruitment of 14-3-3, a scaffolding protein capable of facilitating interactions between two simultaneously bound proteins. Chromatin conformation capture assays indicate that interaction between the enhancer and the promoter is dependent on the presence of JIL-1, 14-3-3, and CBP. Genome-wide analyses extend these conclusions to most Drosophila genes, showing that the presence of JIL-1, H3K9acS10ph, and H3K27acS28ph is a general feature of enhancers and promoters in this organism.


Subject(s)
Chromatin/genetics , Drosophila Proteins/metabolism , Enhancer Elements, Genetic , Histones/metabolism , Promoter Regions, Genetic , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Acetylation , Animals , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Chromatin/metabolism , Chromatin Immunoprecipitation , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Ecdysone/genetics , Ecdysone/metabolism , Gene Expression Regulation , Genome, Insect , Histones/genetics , Lysine/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Serine/metabolism , Transcription, Genetic
6.
PLoS Genet ; 6(6): e1000975, 2010 Jun 03.
Article in English | MEDLINE | ID: mdl-20532201

ABSTRACT

Post-translational modifications of histone proteins modulate the binding of transcription regulators to chromatin. Studies in Drosophila have shown that the phosphorylation of histone H3 at Ser10 (H3S10ph) by JIL-1 is required specifically during early transcription elongation. 14-3-3 proteins bind H3 only when phosphorylated, providing mechanistic insights into the role of H3S10ph in transcription. Findings presented here show that 14-3-3 functions downstream of H3S10ph during transcription elongation. 14-3-3 proteins localize to active genes in a JIL-1-dependent manner. In the absence of 14-3-3, levels of actively elongating RNA polymerase II are severely diminished. 14-3-3 proteins interact with Elongator protein 3 (Elp3), an acetyltransferase that functions during transcription elongation. JIL-1 and 14-3-3 are required for Elp3 binding to chromatin, and in the absence of either protein, levels of H3K9 acetylation are significantly reduced. These results suggest that 14-3-3 proteins mediate cross-talk between histone phosphorylation and acetylation at a critical step in transcription elongation.


Subject(s)
14-3-3 Proteins/metabolism , Drosophila melanogaster/metabolism , Histones/metabolism , Transcription, Genetic , Acetylation , Animals , Chromosomes/genetics , Chromosomes/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Gene Expression Regulation , Histone Acetyltransferases/metabolism , Nerve Tissue Proteins/metabolism , Phosphorylation , Protein Binding , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism
7.
Traffic ; 9(11): 1878-93, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18764821

ABSTRACT

Proteostasis (Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science 2008;319:916-919) refers to the biology that maintains the proteome in health and disease. Proteostasis is challenged by the most common mutant in cystic fibrosis, DeltaF508, a chloride channel [the cystic fibrosis transmembrane conductance regulator (CFTR)] that exhibits a temperature-sensitive phenotype for coupling to the coatomer complex II (COPII) transport machine for exit from the endoplasmic reticulum. Whether rescue of export of DeltaF508 CFTR at reduced temperature simply reflects energetic stabilization of the chemical fold defined by its primary sequence or requires a unique proteostasis environment is unknown. We now show that reduced temperature (30 degrees C) export of DeltaF508 does not occur in some cell types, despite efficient export of wild-type CFTR. We find that DeltaF508 export requires a local biological folding environment that is sensitive to heat/stress-inducible factors found in some cell types, suggesting that the energetic stabilization by reduced temperature is necessary, but not sufficient, for export of DeltaF508. Thus, the cell may require a proteostasis environment that is in part distinct from the wild-type pathway to restore DeltaF508 coupling to COPII. These results are discussed in the context of the energetics of the protein fold and the potential application of small molecules to achieve a proteostasis environment favoring export of a functional form of DeltaF508.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Protein Folding , Animals , Cell Line , Cricetinae , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Humans , Protein Transport , Temperature
8.
Genome Res ; 15(1): 166-73, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15590945

ABSTRACT

Interspecies comparisons are important for deciphering the functional content and evolution of genomes. The expansive array of >70 public vertebrate genomic bacterial artificial chromosome (BAC) libraries can provide a means of comparative mapping, sequencing, and functional analysis of targeted chromosomal segments that is independent and complementary to whole-genome sequencing. However, at the present time, no complementary resource exists for the efficient targeted physical mapping of the majority of these BAC libraries. Universal overgo-hybridization probes, designed from regions of sequenced genomes that are highly conserved between species, have been demonstrated to be an effective resource for the isolation of orthologous regions from multiple BAC libraries in parallel. Here we report the application of the universal probe design principal across entire genomes, and the subsequent creation of a complementary probe resource, Uprobe, for screening vertebrate BAC libraries. Uprobe currently consists of whole-genome sets of universal overgo-hybridization probes designed for screening mammalian or avian/reptilian libraries. Retrospective analysis, experimental validation of the probe design process on a panel of representative BAC libraries, and estimates of probe coverage across the genome indicate that the majority of all eutherian and avian/reptilian genes or regions of interest can be isolated using Uprobe. Future implementation of the universal probe design strategy will be used to create an expanded number of whole-genome probe sets that will encompass all vertebrate genomes.


Subject(s)
Alligators and Crocodiles/genetics , Chickens/genetics , DNA Probes/genetics , Genome , Mammals/genetics , Physical Chromosome Mapping/methods , Animals , Cats , Cattle , Chromosomes, Artificial, Bacterial/genetics , Dogs , Humans , Internet , Mice , Nucleic Acid Hybridization/methods , Pan troglodytes/genetics , Papio/genetics , Research Design , Retrospective Studies , Swine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL