Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5666, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37723181

ABSTRACT

TANK-binding kinase 1 (TBK1) is a key signalling component in the production of type-I interferons, which have essential antiviral activities, including against SARS-CoV-2. TBK1, and its homologue IκB kinase-ε (IKKε), can also induce pro-inflammatory responses that contribute to pathogen clearance. While initially protective, sustained engagement of type-I interferons is associated with damaging hyper-inflammation found in severe COVID-19 patients. The contribution of TBK1/IKKε signalling to these responses is unknown. Here we find that the small molecule idronoxil inhibits TBK1/IKKε signalling through destabilisation of TBK1/IKKε protein complexes. Treatment with idronoxil, or the small molecule inhibitor MRT67307, suppresses TBK1/IKKε signalling and attenuates cellular and molecular lung inflammation in SARS-CoV-2-challenged mice. Our findings additionally demonstrate that engagement of STING is not the major driver of these inflammatory responses and establish a critical role for TBK1/IKKε signalling in SARS-CoV-2 hyper-inflammation.


Subject(s)
COVID-19 , Interferon Type I , Animals , Mice , I-kappa B Kinase , Disease Models, Animal , SARS-CoV-2 , Inflammation
2.
Bioorg Med Chem ; 28(6): 115344, 2020 03 15.
Article in English | MEDLINE | ID: mdl-32051094

ABSTRACT

Proprotein convertase (PC) subtilisin kexin type 9 (PCSK9) inhibits the clearance of low density lipoprotein (LDL) cholesterol from plasma by directly interacting with the LDL receptor (LDLR). As the interaction promotes elevated plasma LDL cholesterol levels and a predisposition to cardiovascular disease (CVD), it has attracted much interest as a therapeutic target. While anti-PCSK9 monoclonal antibodies have been successful in the treatment of hypercholesteremia by decreasing CVD risk, their high cost and a requirement for injection have prohibited widespread use. The advent of an orally bioavailable small molecule inhibitor of the PCSK9-LDLR interaction is an attractive alternative, however efforts have been tempered as the binding interface is unfavourable for binding by small organic molecules. Despite its challenging nature, we report herein the discovery of compound 3f as a small molecule inhibitor of PCSK9. The kinase inhibitor nilotinib emerged from a computational screen that was applied to identify compounds that may bind to a cryptic groove within PCSK9 and proximal to the LDLR-binding interface. A subsequent in vitro PCSK9-LDLR binding assay established that nilotinib was a bona fide but modest inhibitor of the interaction (IC50 = 9.8 µM). Through multiple rounds of medicinal chemistry, 3f emerged as a lead-like molecule by demonstrating disruption of the PCSK9-LDLR interaction at nanomolar levels in vitro (IC50 = 537 nM) with no inhibitory activity (IC50 > 10 µM) against a small panel of kinases. Compound 3f restored LDL uptake by liver cells at sub-micromolar levels and demonstrated excellent bioavailability when delivered subcutaneously in mice. Most significantly, compound 3f lowered total cholesterol levels in the plasma of wild-type mice, thereby providing proof-of-concept that the notion of a small molecule inhibitor against PCSK9 is therapeutically viable.


Subject(s)
PCSK9 Inhibitors , Receptors, LDL/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Animals , Binding Sites/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors , Female , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Structure , Proprotein Convertase 9/deficiency , Proprotein Convertase 9/metabolism , Receptors, LDL/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
3.
Mol Biotechnol ; 30(3): 253-70, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15988050

ABSTRACT

Compounds based on a flavonoid (di-phenolic) ring structure are emerging as a potentially important new class of pharmaceutical compounds with a broad range of biological activities, most prominent of which are their potential role as anticancer agents. These compounds exert a wide range of upregulating and downregulating effects on signal transduction processes within cells in both plants and animals. The observation that human communities, which consume large quantities of these compounds (legume-based vegetarian diets), have a lower incidence of many degenerative diseases and some cancers has led to the speculation that these compounds, or synthetic analogs, may be of therapeutic value. This article reviews the evidence supporting this hypothesis and provides some examples of attempts to develop new therapeutics based on dietary isoflavones or novel isoflavonoid structures in maintaining prostate health and in cancer treatment and management. One of these compounds, phenoxodiol, is now in human clinical trials and has shown promise in patients with recurrent ovarian cancer where the cancer is refractory or resistant to standard chemotherapy, and in patients with hormone-refractory prostate cancer.


Subject(s)
Flavonoids/pharmacology , Flavonoids/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/prevention & control , Animals , Cell Cycle/drug effects , Flavonoids/metabolism , Flavonoids/toxicity , Health , Hormones/metabolism , Humans , Hyperplasia/pathology , Hyperplasia/prevention & control , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL