Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 11(5): 1176-1191, 2021 05.
Article in English | MEDLINE | ID: mdl-33355208

ABSTRACT

Although replication repair deficiency, either by mismatch repair deficiency (MMRD) and/or loss of DNA polymerase proofreading, can cause hypermutation in cancer, microsatellite instability (MSI) is considered a hallmark of MMRD alone. By genome-wide analysis of tumors with germline and somatic deficiencies in replication repair, we reveal a novel association between loss of polymerase proofreading and MSI, especially when both components are lost. Analysis of indels in microsatellites (MS-indels) identified five distinct signatures (MS-sigs). MMRD MS-sigs are dominated by multibase losses, whereas mutant-polymerase MS-sigs contain primarily single-base gains. MS deletions in MMRD tumors depend on the original size of the MS and converge to a preferred length, providing mechanistic insight. Finally, we demonstrate that MS-sigs can be a powerful clinical tool for managing individuals with germline MMRD and replication repair-deficient cancers, as they can detect the replication repair deficiency in normal cells and predict their response to immunotherapy. SIGNIFICANCE: Exome- and genome-wide MSI analysis reveals novel signatures that are uniquely attributed to mismatch repair and DNA polymerase. This provides new mechanistic insight into MS maintenance and can be applied clinically for diagnosis of replication repair deficiency and immunotherapy response prediction.This article is highlighted in the In This Issue feature, p. 995.


Subject(s)
Cell Transformation, Neoplastic , DNA Mismatch Repair , DNA-Directed DNA Polymerase , Gene Expression Regulation, Neoplastic , Microsatellite Instability , Neoplasms/genetics , Humans , Exome Sequencing
2.
Am J Physiol Endocrinol Metab ; 317(4): E559-E572, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31310579

ABSTRACT

Nutrient sensing plays an important role in ensuring that appropriate digestive or hormonal responses are elicited following the ingestion of fuel substrates. Mechanisms of nutrient sensing in the oral cavity have been fairly well characterized and involve lingual taste receptors. These include heterodimers of G protein-coupled receptors (GPCRs) of the taste receptor type 1 (T1R) family for sensing sweet (T1R2-T1R3) and umami (T1R1-T1R3) stimuli, the T2R family for sensing bitter stimuli, and ion channels for conferring sour and salty tastes. In recent years, several studies have revealed the existence of additional nutrient-sensing mechanisms along the gastrointestinal tract. Glucose sensing is achieved by the T1R2-T1R3 heterodimer on enteroendocrine cells, which plays a role in triggering the secretion of incretin hormones for improved glycemic and lipemic control. Protein hydrolysates are detected by Ca2+-sensing receptor, the T1R1-T1R3 heterodimer, and G protein-coupled receptor 92/93 (GPR92/93), which leads to the release of the gut-derived satiety factor cholecystokinin. Furthermore, several GPCRs have been implicated in fatty acid sensing: GPR40 and GPR120 respond to medium- and long-chain fatty acids, GPR41 and GPR43 to short-chain fatty acids, and GPR119 to endogenous lipid derivatives. Aside from the recognition of fuel substrates, both the oral cavity and the gastrointestinal tract also possess T2R-mediated mechanisms of recognizing nonnutrients such as environmental contaminants, bacterial toxins, and secondary plant metabolites that evoke a bitter taste. These gastrointestinal sensing mechanisms result in the transmission of neuronal signals to the brain through the release of gastrointestinal hormones that act on vagal and enteric afferents to modulate the physiological response to nutrients, particularly satiety and energy homeostasis. Modulating these orally accessible nutrient-sensing pathways using particular foods, dietary supplements, or pharmaceutical compounds may have therapeutic potential for treating obesity and metabolic diseases.


Subject(s)
Brain/physiology , Digestive System Physiological Phenomena , Neurosecretory Systems/metabolism , Neurosecretory Systems/physiology , Nutrients , Taste/physiology , Animals , Humans , Taste Buds
3.
Cancer Immunol Res ; 6(9): 1001-1007, 2018 09.
Article in English | MEDLINE | ID: mdl-30018044

ABSTRACT

Alveolar soft-part sarcoma (ASPS) is a morphologically distinctive mesenchymal tumor characterized by a canonical ASPL-TFE3 fusion product. In the metastatic setting, standard cytotoxic chemotherapies are typically ineffective. Studies have suggested modest clinical response to multitargeted receptor tyrosine kinase inhibitors. Here, we report sustained partial responses in two patients with immune checkpoint inhibition treated with either durvalumab (anti-PD-L1) alone or in combination with tremelimumab (anti-CTLA-4), which appeared unrelated to tumor immune infiltrates or mutational burden. Genomic analysis of these patients, and other cases of ASPS, demonstrated molecular mismatch-repair deficiency signatures. These findings suggest that immune checkpoint blockade may be a useful therapeutic strategy for ASPS. Cancer Immunol Res; 6(9); 1001-7. ©2018 AACR.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Sarcoma, Alveolar Soft Part/drug therapy , Adult , Antibodies, Monoclonal, Humanized , Drug Therapy, Combination , Female , Humans , Sarcoma, Alveolar Soft Part/genetics , Transcriptome , Treatment Outcome , Young Adult
4.
PLoS One ; 12(10): e0186740, 2017.
Article in English | MEDLINE | ID: mdl-29049376

ABSTRACT

TGFbeta induces fibrogenic responses in fibroblasts. Reactive oxygen species (ROS)/nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) may contribute to fibrogenic responses. Here, we examine if the antioxidant N-acetylcysteine (NAC), the NOX inhibitor diphenyleneiodonium (DPI) and the selective NOX1/NOX4 inhibitor GKT-137831 impairs the ability of TGFbeta to induce profibrotic gene expression in human gingival (HGF) and dermal (HDF) fibroblasts. We also assess if GKT-137831 can block the persistent fibrotic phenotype of lesional scleroderma (SSc) fibroblasts. We use real-time polymerase chain reaction and Western blot analysis to evaluate whether NAC and DPI impair the ability of TGFbeta1 to induce expression of fibrogenic genes in fibroblasts. The effects of GKT-137831 on TGFbeta-induced protein expression and the persistent fibrotic phenotype of lesional scleroderma (SSc) fibroblasts were tested using Western blot and collagen gel contraction analyses. In HDF and HGF, TGFbeta1 induces CCN2, CCN1, endothelin-1 and alpha-smooth muscle actin (SMA) in a fashion sensitive to NAC. Induction of COL1A1 mRNA was unaffected. Similar results were seen with DPI. NAC and DPI impaired the ability of TGFbeta1 to induce protein expression of CCN2 and alpha-SMA in HDF and HGF. GKT-137831 impaired TGFbeta-induced CCN2 and alpha-SMA protein expression in HGF and HDF. In lesional SSc dermal fibroblasts, GKT-137831 reduced alpha-SMA and CCN2 protein overexpression and collagen gel contraction. These results are consistent with the hypothesis that antioxidants or NOX1/4 inhibition may be useful in blocking profibrotic effects of TGFbeta on dermal and gingival fibroblasts and warrant consideration for further development as potential antifibrotic agents.


Subject(s)
Actins/metabolism , Antioxidants/pharmacology , Connective Tissue Growth Factor/metabolism , Gingiva/metabolism , NADPH Oxidase 1/antagonists & inhibitors , NADPH Oxidase 4/antagonists & inhibitors , Skin/metabolism , Transforming Growth Factor beta1/antagonists & inhibitors , Cells, Cultured , Fibroblasts/metabolism , Gingiva/cytology , Humans , Skin/cytology , Transforming Growth Factor beta1/physiology
5.
Clin Chim Acta ; 450: 196-202, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26310965

ABSTRACT

BACKGROUND: The CALIPER program has previously reported a comprehensive database of pediatric reference intervals for 63 biochemical and immunochemical markers. Here, covariate-stratified reference intervals were determined for a number of special assays not previously reported. METHODS: A total of 1917 healthy children and adolescents were recruited and serum concentrations of 14 biochemical markers were measured using the Abbott Architect ci4100 system. Age and gender partitions were statistically determined, outliers removed and reference intervals calculated using CSLI C28-A3 guidelines. RESULTS: Many analytes showed dynamic changes in concentration requiring at least 3 age partitions. Unique intervals were required within the first year of life for: pancreatic amylase, C-peptide, ceruloplasmin, insulin, ß-2-microglobulin, cystatin C, dehydroepiandrosterone sulfate (DHEA-S), and α-1-glycoprotein. Cholinesterase, cholinesterase-dibucaine number, and immunoglobulin E required only 2 age partitions and α-1-antitrypsin required only one. Anti-CCP and anti-TPO levels were below the detection limit of the assay. Some analytes including insulin and DHEA-S required additional gender partitions for specific age groups. CONCLUSIONS: Complex profiles were observed for endocrine and special chemistry markers, requiring establishment of age- and gender-specific reference intervals. These updated reference intervals will allow improved laboratory assessment of pediatric patients but should be validated for each analytical platform and local population as recommended by CLSI.


Subject(s)
Biomarkers/blood , Blood Chemical Analysis/standards , Health , Residence Characteristics , Adolescent , Aging/blood , Child , Child, Preschool , Databases, Factual , Female , Growth and Development , Humans , Infant , Infant, Newborn , Male , Reference Values
6.
EJIFCC ; 25(3): 227-43, 2014 Oct.
Article in English | MEDLINE | ID: mdl-27683470

ABSTRACT

Peer review has been defined as a process of subjecting an author's scholarly work, research or ideas to the scrutiny of others who are experts in the same field. It functions to encourage authors to meet the accepted high standards of their discipline and to control the dissemination of research data to ensure that unwarranted claims, unacceptable interpretations or personal views are not published without prior expert review. Despite its wide-spread use by most journals, the peer review process has also been widely criticised due to the slowness of the process to publish new findings and due to perceived bias by the editors and/or reviewers. Within the scientific community, peer review has become an essential component of the academic writing process. It helps ensure that papers published in scientific journals answer meaningful research questions and draw accurate conclusions based on professionally executed experimentation. Submission of low quality manuscripts has become increasingly prevalent, and peer review acts as a filter to prevent this work from reaching the scientific community. The major advantage of a peer review process is that peer-reviewed articles provide a trusted form of scientific communication. Since scientific knowledge is cumulative and builds on itself, this trust is particularly important. Despite the positive impacts of peer review, critics argue that the peer review process stifles innovation in experimentation, and acts as a poor screen against plagiarism. Despite its downfalls, there has not yet been a foolproof system developed to take the place of peer review, however, researchers have been looking into electronic means of improving the peer review process. Unfortunately, the recent explosion in online only/electronic journals has led to mass publication of a large number of scientific articles with little or no peer review. This poses significant risk to advances in scientific knowledge and its future potential. The current article summarizes the peer review process, highlights the pros and cons associated with different types of peer review, and describes new methods for improving peer review.

SELECTION OF CITATIONS
SEARCH DETAIL
...