Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38703078

ABSTRACT

INTRODUCTION: Cannabidiol (CBD) is the primary non-psychoactive chemical derived from Cannabis Sativa, and its growing popularity is due to its potential therapeutic properties while avoiding the psychotropic effects of other phytocannabinoids, such as tetrahydrocannabinol (THC). Numerous pre-clinical studies in cellular and animal models and human clinical trials have demonstrated a positive impact of CBD on physiological and pathological processes. Recently, the FDA approved its use for the treatment of seizures, and clinical trials to test the efficacy of CBD in myocarditis and pericarditis are ongoing. AREAS COVERED: We herein reviewed the current literature on the reported effects of CBD in the cardiovascular system, highlighting the physiological effects and the outcomes of using CBD as a therapeutic tool in pathological conditions to address this significant global health concern. EXPERT OPINION: The comprehensive examination of the literature emphasizes the potential of CBD as a therapeutic option for treating cardiovascular diseases through its anti-inflammatory, vasodilatory, anti-fibrotic, and antioxidant properties in different conditions such as diabetic cardiomyopathy, myocarditis, doxorubicin-induced cardiotoxicity, and ischemia-reperfusion injury.

3.
Molecules ; 29(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38257386

ABSTRACT

Cannabidiol (CBD), a non-psychoactive compound derived from Cannabis Sativa, has garnered increasing attention for its diverse therapeutic potential. This comprehensive review delves into the complex pharmacokinetics of CBD, including factors such as bioavailability, distribution, safety profile, and dosage recommendations, which contribute to the compound's pharmacological profile. CBD's role as a pharmacological inhibitor is explored, encompassing interactions with the endocannabinoid system and ion channels. The compound's anti-inflammatory effects, influencing the Interferon-beta and NF-κB, position it as a versatile candidate for immune system regulation and interventions in inflammatory processes. The historical context of Cannabis Sativa's use for recreational and medicinal purposes adds depth to the discussion, emphasizing CBD's emergence as a pivotal phytocannabinoid. As research continues, CBD's integration into clinical practice holds promise for revolutionizing treatment approaches and enhancing patient outcomes. The evolution in CBD research encourages ongoing exploration, offering the prospect of unlocking new therapeutic utility.


Subject(s)
Cannabidiol , Cannabis , Hallucinogens , Humans , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Biological Availability , Cannabinoid Receptor Agonists , Carbidopa
4.
Molecules ; 28(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37630232

ABSTRACT

Cannabidiol (CBD) is the primary non-psychoactive chemical from Cannabis Sativa, a plant used for centuries for both recreational and medicinal purposes. CBD lacks the psychotropic effects of Δ9-tetrahydrocannabinol (Δ9-THC) and has shown great therapeutic potential. CBD exerts a wide spectrum of effects at a molecular, cellular, and organ level, affecting inflammation, oxidative damage, cell survival, pain, vasodilation, and excitability, among others, modifying many physiological and pathophysiological processes. There is evidence that CBD may be effective in treating several human disorders, like anxiety, chronic pain, psychiatric pathologies, cardiovascular diseases, and even cancer. Multiple cellular and pre-clinical studies using animal models of disease and several human trials have shown that CBD has an overall safe profile. In this review article, we summarize the pharmacokinetics data, the putative mechanisms of action of CBD, and the physiological effects reported in pre-clinical studies to give a comprehensive list of the findings and major effects attributed to this compound.


Subject(s)
Cannabidiol , Chronic Pain , Animals , Humans , Cannabidiol/pharmacology , Cell Survival , Anxiety , Anxiety Disorders
5.
Environ Pollut ; 295: 118677, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34906594

ABSTRACT

Air pollution exposure positively correlates with increased cardiovascular morbidity and mortality rates, mainly due to myocardial infarction (MI). Herein, we aimed to study the metabolic mechanisms underlying this association, focusing on the evaluation of cardiac mitochondrial function and dynamics, together with its impact over MI progression. An initial time course study was performed in BALB/c mice breathing filtered air (FA) or urban air (UA) in whole-body exposure chambers located in Buenos Aires City downtown for up to 16 weeks (n = 8 per group and time point). After 12 weeks, lung inflammatory cell recruitment was evident in UA-exposed mice. Interestingly, impaired redox metabolism, characterized by decreased lung SOD activity and increased GSSG levels and NOX activity, precede local inflammation in this group. At this selected time point, additional mice were exposed to FA or UA (n = 12 per group) and alveolar macrophage PM uptake and nitric oxide (NO) production was observed in UA-exposed mice, together with increased pro-inflammatory cytokine levels (TNF-α and IL-6) in BAL and plasma. Consequently, impaired heart tissue oxygen metabolism and altered mitochondrial ultrastructure and function were observed in UA-exposed mice after 12 weeks, characterized by decreased active state respiration and ATP production rates, and enhanced mitochondrial H2O2 production. Moreover, disturbed cardiac mitochondrial dynamics was detected in this group. This scenario led to a significant increase in the area of infarcted tissue following myocardial ischemia reperfusion injury in vivo, from 43 ± 3% of the area at risk in mice breathing FA to 66 ± 4% in UA-exposed mice (n = 6 per group, p < 0.01), together with a sustained increase in LVEDP during myocardial reperfusion. Taken together, our data unravel cardiac mitochondrial mechanisms that contribute to the understanding of the adverse health effects of urban air pollution exposure, and ultimately highlight the importance of considering environmental factors in the development of cardiovascular diseases.


Subject(s)
Air Pollution , Myocardial Infarction , Air Pollution/analysis , Animals , Hydrogen Peroxide , Mice , Mitochondria , Myocardial Infarction/chemically induced , Particulate Matter/toxicity
7.
Am J Physiol Heart Circ Physiol ; 314(6): H1289-H1297, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29631370

ABSTRACT

Vagal stimulation (VS) during myocardial ischemia and reperfusion has beneficial effects. However, it is not known whether short-term VS applied before ischemia or at the onset of reperfusion protects the ischemic myocardium. This study was designed to determine whether short-term VS applied before ischemia or at the onset of reperfusion reduces myocardial infarct size (IS), mimicking classic preconditioning and postconditioning. A second objective was to study the participation of muscarinic and nicotinic receptors in the protection of both preischemic and reperfusion stimulation. FVB mice were subjected to 30 min of regional myocardial ischemia followed by 2 h of reperfusion without VS, with 10-min preischemic VS (pVS), or with VS during the first 10 min of reperfusion (rVS). pVS reduced IS, and this effect was abolished by atropine and wortmannin. rVS also reduced IS in a similar manner, and this effect was abolished by the α7-nicotinic acetylcholine receptor blocker methyllycaconitine. pVS increased Akt and glycogen synthase kinase (GSK)-3ß phosphorylation. No changes in Akt and GSK-3ß phosphorylation were observed in rVS. Stimulation-mediated IS protection was abolished with the JAK2 blocker AG490. rVS did not modify IL-6 and IL-10 levels in the plasma or myocardium. Splenic denervation and splenectomy did not abolish the protective effect of rVS. In conclusion, pVS and rVS reduced IS by different mechanisms: pVS activated the Akt/GSK-3ß muscarinic pathway, whereas rVS activated α7-nicotinic acetylcholine receptors and JAK2, independently of the cholinergic anti-inflammatory pathway. NEW & NOTEWORTHY Our data suggest, for the first time, that vagal stimulation applied briefly either before ischemia or at the beginning of reperfusion mimics classic preconditioning and postconditioning and reduces myocardial infarction, activating different mechanisms. We also infer an important role of α7-nicotinic receptors for myocardial protection independent of the cholinergic anti-inflammatory pathway.


Subject(s)
Heart/innervation , Ischemic Postconditioning , Ischemic Preconditioning, Myocardial , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Vagus Nerve Stimulation , Vagus Nerve/physiopathology , Animals , Cytokines/metabolism , Disease Models, Animal , Glycogen Synthase Kinase 3 beta/metabolism , Janus Kinase 2/metabolism , Male , Mice , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocardium/pathology , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Muscarinic/metabolism , Signal Transduction , Time Factors , alpha7 Nicotinic Acetylcholine Receptor/metabolism
8.
Pharmaceuticals (Basel) ; 11(1)2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29462915

ABSTRACT

Sudden unexpected death in epilepsy (SUDEP) is the major cause of death in those patients suffering from refractory epilepsy (RE), with a 24-fold higher risk relative to the normal population. SUDEP risk increases with seizure frequency and/or seizure-duration as in RE and Status Epilepticus (SE). P-glycoprotein (P-gp), the product of the multidrug resistant ABCB1-MDR-1 gene, is a detoxifying pump that extrudes drugs out of the cells and can confer pharmacoresistance to the expressing cells. Neurons and cardiomyocytes normally do not express P-gp, however, it is overexpressed in the brain of patients or in experimental models of RE and SE. P-gp was also detected after brain or cardiac hypoxia. We have previously demonstrated that repetitive pentylenetetrazole (PTZ)-induced seizures increase P-gp expression in the brain, which is associated with membrane depolarization in the hippocampus, and in the heart, which is associated with fatal SE. SE can produce hypoxic-ischemic altered cardiac rhythm (HIACR) and severe arrhythmias, and both are related with SUDEP. Here, we investigate whether SE induces the expression of hypoxia-inducible transcription factor (HIF)-1α and P-gp in cardiomyocytes, which is associated with altered heart rhythm, and if these changes are related with the spontaneous death rate. SE was induced in Wistar rats once a week for 3 weeks, by lithium-pilocarpine-paradigm. Electrocardiograms, HIF-1α, and P-gp expression in cardiomyocytes, were evaluated in basal conditions and 72 h after SE. All spontaneous deaths occurred 48 h after each SE was registered. We observed that repeated SE induced HIF-1α and P-gp expression in cardiomyocytes, electrocardiographic (ECG) changes, and a high rate of spontaneous death. Our results suggest that the highly accumulated burden of convulsive stress results in a hypoxic heart insult, where P-gp expression may play a depolarizing role in cardiomyocyte membranes and in the development of the ECG changes, such as QT interval prolongation, that could be related with SUDEP. We postulate that this mechanism could explain, in part, the higher SUDEP risk in patients with RE or SE.

9.
Front Neurol ; 8: 52, 2017.
Article in English | MEDLINE | ID: mdl-28270794

ABSTRACT

The trigeminal nerve and heart are strongly related through somato-autonomic nervous reflexes that induce rapid changes in cardiovascular function. Several trigeminal reflexes have been described, but the diving and trigeminocardiac reflexes are the most studied. The heart is a target organ dually innervated by the sympathetic and parasympathetic systems. Thus, how cardiac function is regulated during the trigeminal reflexes is the result of the combination of an increased parasympathetic response and increased, decreased, or unaltered sympathetic activity. Various hemodynamic changes occur as a consequence of these alterations in autonomic tone. Often in the oxygen-conserving physiological reflexes such as the diving reflex, sympathetic/parasympathetic co-activation reduces the heart rate and either maintains or increases blood pressure. Conversely, in the trigeminocardiac reflex, bradycardia and hypotension due to parasympathetic activation and sympathetic inactivation tend to be observed. These sudden cardiac innervation disturbances may promote the generation of arrhythmias or myocardial ischemia during surgeries in the trigeminal territory. However, the function and mechanisms involved in the trigeminal reflexes remain to be fully elucidated. The current review provides a brief update and analysis of the features of these reflexes, with special focus on how the autonomic nervous system interacts with cardiovascular function.

10.
Rev. argent. cardiol ; 85(1): 1-10, feb. 2017. ilus
Article in Spanish | LILACS | ID: biblio-957748

ABSTRACT

Introducción: Previamente se demostraron beneficios de la estimulación vagal (EV) prolongada en el infarto de miocardio. No obstante, se desconocen los efectos y los mecanismos de protección cuando se aplica en forma selectiva y brevemente antes de la isquemia o al inicio de la reperfusión. Objetivo: Estudiar si la EV en la reperfusión reduce el tamaño del infarto de manera similar a la EV preisquémica y si en ambas la protección está mediada por receptores muscarínicos o nicotínicos. Material y métodos: En ratones FVB se realizó una isquemia miocárdica regional de 30 minutos y 2 horas de reperfusión sin EV (I/R), con EV preisquémica por 10 minutos (EVp), con EV preisquémica y bloqueo muscarínico con atropina y con EV preisquémica y bloqueo nicotínico a-7 con metilicaconitina. También se estudiaron los efectos de la EV al inicio de la reperfusión (EVr), con atropina y con metilicaconitina. Se cateterizó el ventrículo izquierdo para medir la función ventricular. Se midió el área de riesgo con azul de Evans y el área de infarto con cloruro de 2,3,5-trifeniltetrazolio. Resultados: La EVr redujo el tamaño del infarto de forma similar a la EVp, aunque los mecanismos de protección fueron diferentes. La EVp protegió a través de la activación colinérgica de los receptores muscarínicos. La EVr, en cambio, protegió por una vía colinérgica nicotínica a-7. Conclusión: El presente estudio demuestra por primera vez en un modelo de isquemia y reperfusión miocárdica en ratones que una EV breve de 10 minutos es capaz de reducir de manera similar el tamaño del infarto, tanto cuando se aplica previo a la isquemia como en el inicio de la reperfusión, mimetizando de esta manera al precondicionamiento y al poscondicionamiento isquémicos, respectivamente.

11.
Rev. argent. cardiol ; 83(6): 1-8, Dec. 2015. graf
Article in English | LILACS | ID: biblio-957671

ABSTRACT

Background: Previous studies have shown that endurance training (ET) reduces inotropic, chronotropic and lusitropic reserve in normal mice. Objective: The aim of this study was to evaluate the effect of endurance training on the inotropic and chronotropic reserve of trans-genic mice with sympathetic hyperactivity induced by overexpression of the cardiac GSα protein. Methods: Endurance training consisted in two daily 90-min sessions, 6 days/week, during 4 weeks. Four experimental groups were formed: 1) non-transgenic sedentary (nonTG Sed); 2) transgenic sedentary (TG Sed); 3) nonTG+ET and 4) TG+ET. Results: Endurance training induced myocardial hypertrophy [left ventricular weight (g)/tibial length (mm)] from 5.3±0.3 and 5.5±0.2 in nonTG Sed and TG Sed to 6.8±0.1 and 6.8±0.3 in nonTG+ET and TG+ET, respectively (p<0.05 nonTG Sed vs. nonTG+ET and TG Sed vs. TG+ET). Isoproterenol administration (56 ng/kg) increased +dP/dtmax by 63±10% in nonTG Sed (p<0.05 vs. baseline), 34±2% in TG Sed (p<0.05 vs. baseline and p<0.05 vs. nonTG Sed), 36±7% in non TG+ET (p<0.05 vs. base-line) and 36±7% in TG+ET (p<0.05 vs. baseline). Heart rate (beats/min) increased from 301±15 to 528±37 in nonTG Sed (p<0.05 vs. baseline), from 519±57 to 603±41 in TG Sed, from 300±16 to 375±20 in nonTG+ET (p<0.05 vs. baseline) and from 484±18 to 515±21 in TG+ET. Interstitial collagen was similar among groups. Conclusions: These results suggest that endurance training decreases inotropic and chronotropic reserve without generating struc-tural changes associated to pathological hypertrophy. The presence of sympathetic hyperactivity does not modify this response.


Introducción: En estudios previos mostramos que el ejercicio intenso (EI) reduce la reserva inotrópica, cronotrópica y lusitrópica en ratones normales. Objetivo: Evaluar el efecto del ejercicio intenso sobre la reserva inotrópica y cronotrópica en un modelo de ratones transgénicos con sobreexpresión cardíaca de la proteína Gsα, que induce un cuadro de hiperactividad simpática. Material y métodos: El ejercicio consistió en dos sesiones diarias de 90 minutos de natación, 6 días/semana durante 4 semanas. Se utilizaron cuatro grupos experimentales: 1: sedentario no transgénico (noTG Sed); 2: sedentario TG (TG Sed); 3: noTG+EI y 4: TG+EI. Resultados: El ejercicio indujo el desarrollo de hipertrofia miocárdica [índice peso del ventrículo izquierdo (g)/longitud de la tibia (mm)] desde 5,3±0,3 y 5,5±0,2 en noTG Sed y TG Sed a 6,8±0,1 y 6,8±0,3 en noTG+EI y TG+EI, respectivamente (p<0,05 noTG Sed vs. noTG+EI y TG Sed vs. TG+EI). La administración de isoproterenol (56 ng/kg) incrementó la +dP/dtmáx 63% ±10% en noTG Sed (p<0,05 vs. basal); 34% ±2% en TG Sed (p<0,05 vs.basal y p< 0,05 vs. noTG Sed); 36% ±7% en noTG+EI (p<0,05 vs. basal) y 36% ±7% en TG+EI (p<0,05 vs.basal). La frecuencia cardíaca aumentó de 301±15 a 528±37 latidos/min en noTG Sed (p<0,05 vs. basal), de 519±57 a 603±41 latidos/min en TG Sed, de 300±16 a 375±20 en noTG+EI (p<0,05 vs. basal) y de 484±18 a 515±21 en TG+EI. El colágeno intersticial fue similar entre los grupos. Conclusiones: Estos resultados sugieren que el ejercicio intenso disminuye la reserva inotrópica y cronotrópica sin generar cambios estructurales vinculados a la hipertrofia patológica. La presencia de hiperactividad simpática no modifica esta respuesta.

SELECTION OF CITATIONS
SEARCH DETAIL
...