Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
1.
Elife ; 122024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564479

ABSTRACT

Circulating lactate is a fuel source for liver metabolism but may exacerbate metabolic diseases such as nonalcoholic steatohepatitis (NASH). Indeed, haploinsufficiency of lactate transporter monocarboxylate transporter 1 (MCT1) in mice reportedly promotes resistance to hepatic steatosis and inflammation. Here, we used adeno-associated virus (AAV) vectors to deliver thyroxin binding globulin (TBG)-Cre or lecithin-retinol acyltransferase (Lrat)-Cre to MCT1fl/fl mice on a choline-deficient, high-fat NASH diet to deplete hepatocyte or stellate cell MCT1, respectively. Stellate cell MCT1KO (AAV-Lrat-Cre) attenuated liver type 1 collagen protein expression and caused a downward trend in trichrome staining. MCT1 depletion in cultured human LX2 stellate cells also diminished collagen 1 protein expression. Tetra-ethylenglycol-cholesterol (Chol)-conjugated siRNAs, which enter all hepatic cell types, and hepatocyte-selective tri-N-acetyl galactosamine (GN)-conjugated siRNAs were then used to evaluate MCT1 function in a genetically obese NASH mouse model. MCT1 silencing by Chol-siRNA decreased liver collagen 1 levels, while hepatocyte-selective MCT1 depletion by AAV-TBG-Cre or by GN-siRNA unexpectedly increased collagen 1 and total fibrosis without effect on triglyceride accumulation. These findings demonstrate that stellate cell lactate transporter MCT1 significantly contributes to liver fibrosis through increased collagen 1 protein expression in vitro and in vivo, while hepatocyte MCT1 appears not to be an attractive therapeutic target for NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Collagen/metabolism , Collagen Type I/metabolism , Disease Models, Animal , Hepatic Stellate Cells , Liver/metabolism , Liver Cirrhosis/pathology , Mice, Inbred C57BL , Mice, Obese , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Non-alcoholic Fatty Liver Disease/genetics , RNA, Small Interfering/metabolism
2.
bioRxiv ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38617268

ABSTRACT

ZF5.3 is a compact, rationally designed mini-protein that escapes efficiently from the endosomes of multiple cell types. Despite its small size (27 amino acids), ZF5.3 can be isolated intact from the cytosol of treated cells and guides multiple classes of proteins into the cytosol and/or nucleus. In the best cases, delivery efficiencies reach or exceed 50% to establish nuclear or cytosolic concentrations of 500 nM or higher. But other than the requirement for unfoldable cargo and an intact HOPS complex, there is little known about how ZF5.3 traverses the limiting endocytic membrane. Here we delineate the attributes of ZF5.3 that enable efficient endosomal escape. We confirm that ZF5.3 is stable at pH values between 5.5 and 7.5, with no evidence of unfolding even at temperatures as high as 95 °C. The high-resolution NMR structure of ZF5.3 at pH 5.5, also reported here, shows a canonical p zinc-finger fold with the penta-arg motif integrated seamlessly into the C-terminal α-helix. At lower pH, ZF5.3 unfolds cooperatively as judged by both circular dichroism and high-resolution NMR. Unfolding occurs upon protonation of a single Zn(II)-binding His side chain whose pKa corresponds almost exactly to that of the late endosomal lumen. pH-induced unfolding is essential for endosomal escape, as a ZF5.3 analog that remains folded at pH 4.5 fails to efficiently reach the cytosol, despite high overall uptake. Finally, using reconstituted liposomes, we identify a high-affinity interaction of ZF5.3 with a specific lipid-BMP-that is selectively enriched in the inner leaflet of late endosomal membranes. This interaction is 10-fold stronger at low pH than neutral pH, providing a molecular picture for why escape occurs preferentially and in a HOPS-dependent manner from late endosomal compartments. The requirements for programmed endosomal escape identified here should aid and inform the design of proteins, peptidomimetics, and other macromolecules that reach cytosolic or nuclear targets intact and at therapeutically relevant concentrations.

3.
JAMA Neurol ; 81(5): 525-533, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38497971

ABSTRACT

Importance: Rapid and accurate diagnosis of autoimmune encephalitis encourages prompt initiation of immunotherapy toward improved patient outcomes. However, clinical features alone may not sufficiently narrow the differential diagnosis, and awaiting autoantibody results can delay immunotherapy. Objective: To identify simple magnetic resonance imaging (MRI) characteristics that accurately distinguish 2 common forms of autoimmune encephalitis, LGI1- and CASPR2-antibody encephalitis (LGI1/CASPR2-Ab-E), from 2 major differential diagnoses, viral encephalitis (VE) and Creutzfeldt-Jakob disease (CJD). Design, Setting, and Participants: This cross-sectional study involved a retrospective, blinded analysis of the first available brain MRIs (taken 2000-2022) from 192 patients at Oxford University Hospitals in the UK and Mayo Clinic in the US. These patients had LGI1/CASPR2-Ab-E, VE, or CJD as evaluated by 2 neuroradiologists (discovery cohort; n = 87); findings were validated in an independent cohort by 3 neurologists (n = 105). Groups were statistically compared with contingency tables. Data were analyzed in 2023. Main Outcomes and Measures: MRI findings including T2 or fluid-attenuated inversion recovery (FLAIR) hyperintensities, swelling or volume loss, presence of gadolinium contrast enhancement, and diffusion-weighted imaging changes. Correlations with clinical features. Results: Among 192 participants with MRIs reviewed, 71 were female (37%) and 121 were male (63%); the median age was 66 years (range, 19-92 years). By comparison with VE and CJD, in LGI1/CASPR2-Ab-E, T2 and/or FLAIR hyperintensities were less likely to extend outside the temporal lobe (3/42 patients [7%] vs 17/18 patients [94%] with VE; P < .001, and 3/4 patients [75%] with CJD; P = .005), less frequently exhibited swelling (12/55 [22%] with LGI1/CASPR2-Ab-E vs 13/22 [59%] with VE; P = .003), and showed no diffusion restriction (0 patients vs 16/22 [73%] with VE and 8/10 [80%] with CJD; both P < .001) and rare contrast enhancement (1/20 [5%] vs 7/17 [41%] with VE; P = .01). These findings were validated in an independent cohort and generated an area under the curve of 0.97, sensitivity of 90%, and specificity of 95% among cases with T2/FLAIR hyperintensity in the hippocampus and/or amygdala. Conclusions and Relevance: In this study, T2 and/or FLAIR hyperintensities confined to the temporal lobes, without diffusion restriction or contrast enhancement, robustly distinguished LGI1/CASPR2-Ab-E from key differential diagnoses. These observations should assist clinical decision-making toward expediting immunotherapy. Their generalizability to other forms of autoimmune encephalitis and VE should be examined in future studies.


Subject(s)
Autoantibodies , Encephalitis , Intracellular Signaling Peptides and Proteins , Magnetic Resonance Imaging , Membrane Proteins , Nerve Tissue Proteins , Humans , Male , Female , Aged , Intracellular Signaling Peptides and Proteins/immunology , Middle Aged , Magnetic Resonance Imaging/methods , Cross-Sectional Studies , Autoantibodies/immunology , Encephalitis/diagnostic imaging , Encephalitis/immunology , Encephalitis/pathology , Retrospective Studies , Nerve Tissue Proteins/immunology , Membrane Proteins/immunology , Adult , Aged, 80 and over , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Creutzfeldt-Jakob Syndrome/immunology , Creutzfeldt-Jakob Syndrome/pathology , Diagnosis, Differential , Brain/diagnostic imaging , Brain/pathology , Hashimoto Disease/diagnostic imaging , Hashimoto Disease/immunology , Young Adult
4.
RSC Chem Biol ; 5(3): 209-215, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38456036

ABSTRACT

PHD fingers are a type of chromatin reader that primarily recognize chromatin as a function of lysine methylation state. Dysregulated PHD fingers are implicated in various human diseases, including acute myeloid leukemia. Targeting PHD fingers with small molecules is considered challenging as their histone tail binding pockets are often shallow and surface-exposed. The KDM5A PHD1 finger regulates the catalytic activity of KDM5A, an epigenetic enzyme often misregulated in cancers. To identify ligands that disrupt the PHD1-histone peptide interaction, we conducted a high-throughput screen and validated hits by orthogonal methods. We further elucidated structure-activity relationships in two classes of compounds to identify features important for binding. Our investigation offers a starting point for further optimization of small molecule PHD1 ligands.

5.
J Phys Chem A ; 128(6): 1009-1024, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38299300

ABSTRACT

Lignocellulosic biomass is an abundant renewable resource that can be upgraded to chemical and fuel products through a range of thermal conversion processes. Fast pyrolysis is a promising technology that uses high temperatures and fast heating rates to convert lignocellulose into bio-oils in high yields in the absence of oxygen. Hemicellulose is one of the three major components of lignocellulosic biomass and is a highly branched heteropolymer structure made of pentose, hexose sugars, and sugar acids. In this study, ß-d-xylopyranose is proposed as a model structural motif for the essential chemical structure of hemicellulose. The gas-phase pyrolytic reactivity of ß-d-xylopyranose is thoroughly investigated using computational strategies rooted in quantum chemistry. In particular, its thermal degradation potential energy surfaces are computed employing Minnesota global hybrid functional M06-2X in conjunction with the 6-311++G(d,p) Pople basis set. Electronic energies are further refined by performing DLPNO-CCSD(T)-F12 single-point calculations on top of M06-2X geometries using the cc-pVTZ-F12 basis set. Conformational analysis for minima and transition states is performed with state-of-the-art semiempirical quantum chemical methods coupled with metadynamics simulations. Key thermodynamic quantities (free energies, barrier heights, enthalpies of formation, and heat capacities) are computed. Rate coefficients for the initial steps of thermal decomposition are computed by means of reaction rate theory. For the first time, a detailed elementary reaction kinetic model for ß-d-xylopyranose is developed by utilizing the thermodynamic and kinetic information acquired from the aforementioned calculations. This model specifically targets the initial stages of ß-d-xylopyranose pyrolysis in the high-pressure limit, aiming to gain a deeper understanding of its reaction kinetics. This approach establishes a systematic strategy for exploring reactive pathways, evaluating competing parallel reactions, and selectively accepting or discarding pathways based on the analysis. The findings suggest that acyclic d-xylose plays a significant role as an intermediary in the production of key pyrolytic compounds during the pyrolysis of xylose. These compounds include furfural, anhydro-d-xylopyranose, glycolaldehyde, and dihydrofuran-3(2H)-one.

7.
J Acoust Soc Am ; 154(2): 763-771, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37563827

ABSTRACT

Simulations are widely used to predict noise emissions from traffic, railroad, aircraft, and wind farms and for sound field control. The latter employs multiple sources interacting and it requires accurate phase information. Acoustic models require precise characterization of the medium properties. The logarithmic profile is one of the most commonly used forms to model the wind speed. However, this profile is accurate only in neutral conditions, i.e., when there is not heat flux at the surface. The conventionally neutral boundary layer (CNBL) is the most frequently occurring neutral regime. In this case, the logarithmic profile underestimates the wind speed. This paper analyses the effect that this modelling error has on the sound field close to the ground, for near-ground sources. The first section introduces an approximation of the wind and temperature profiles in such a regime. Afterwards, the sound fields corresponding to the logarithmic profile, a representative CNBL profile, and three more test cases are simulated using the Crank-Nicholson parabolic equation; these are compared employing different metrics. The difference in wind speed introduces a phase error that increases with distance. Moreover, wind speed underestimations also lead to underpredictions of the energy refracted downward.

9.
JASA Express Lett ; 3(7)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37404166

ABSTRACT

The formation and propagation of acoustic vortex waves have been of increasing interest for multiple applications, namely, underwater acoustic communications. Several methods have been presented to form these vortices in underwater environments; however, their performance and propagation over long distances is largely unstudied. Understanding the long-distance propagation of these waves is vital to enhancing their usefulness as an added degree of freedom in underwater acoustic communications systems. In this work, the ray tracing algorithm of bellhop is used to investigate the design parameters of vortex wave transducer and receiver arrays consisting of multiple rings of independently controlled transducers and simulate their performance.

10.
Mol Metab ; 76: 101780, 2023 10.
Article in English | MEDLINE | ID: mdl-37482187

ABSTRACT

OBJECTIVES: Nuclear receptor interacting protein 1 (NRIP1) suppresses energy expenditure via repression of nuclear receptors, and its depletion markedly elevates uncoupled respiration in mouse and human adipocytes. We tested whether NRIP1 deficient adipocytes implanted into obese mice would enhance whole body metabolism. Since ß-adrenergic signaling through cAMP strongly promotes adipocyte thermogenesis, we tested whether the effects of NRIP1 knock-out (NRIP1KO) require the cAMP pathway. METHODS: NRIP1KO adipocytes were implanted in recipient high-fat diet (HFD) fed mice and metabolic cage studies conducted. The Nrip1 gene was disrupted by CRISPR in primary preadipocytes isolated from control vs adipose selective GsαKO (cAdGsαKO) mice prior to differentiation to adipocytes. Protein kinase A inhibitor was also used. RESULTS: Implanting NRIP1KO adipocytes into HFD fed mice enhanced whole-body glucose tolerance by increasing insulin sensitivity, reducing adiposity, and enhancing energy expenditure in the recipients. NRIP1 depletion in both control and GsαKO adipocytes was equally effective in upregulating uncoupling protein 1 (UCP1) and adipocyte beiging, while ß-adrenergic signaling by CL 316,243 was abolished in GsαKO adipocytes. Combining NRIP1KO with CL 316,243 treatment synergistically increased Ucp1 gene expression and increased the adipocyte subpopulation responsive to beiging. Estrogen-related receptor α (ERRα) was dispensable for UCP1 upregulation by NRIPKO. CONCLUSIONS: The thermogenic effect of NRIP1 depletion in adipocytes causes systemic enhancement of energy expenditure when such adipocytes are implanted into obese mice. Furthermore, NRIP1KO acts independently but cooperatively with the cAMP pathway in mediating its effect on adipocyte beiging.


Subject(s)
Adipocytes , Signal Transduction , Mice , Humans , Animals , Nuclear Receptor Interacting Protein 1/metabolism , Mice, Obese , Adipocytes/metabolism , Obesity/metabolism , Thermogenesis/genetics
11.
J Clin Oncol ; 41(28): 4522-4534, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37499209

ABSTRACT

PURPOSE: There is limited evidence regarding the prognostic effects of pathologic lymph node (LN) regression after neoadjuvant chemotherapy for esophageal adenocarcinoma, and a definition of LN response is lacking. This study aimed to evaluate how LN regression influences survival after surgery for esophageal adenocarcinoma. METHODS: Multicenter cohort study of patients with esophageal adenocarcinoma treated with neoadjuvant chemotherapy followed by surgical resection at five high-volume centers in the United Kingdom. LNs retrieved at esophagectomy were examined for chemotherapy response and given a LN regression score (LNRS)-LNRS 1, complete response; 2, <10% residual tumor; 3, 10%-50% residual tumor; 4, >50% residual tumor; and 5, no response. Survival analysis was performed using Cox regression adjusting for confounders including primary tumor regression. The discriminatory ability of different LN response classifications to predict survival was evaluated using Akaike information criterion and Harrell C-index. RESULTS: In total, 17,930 LNs from 763 patients were examined. LN response classified as complete LN response (LNRS 1 ≥1 LN, no residual tumor in any LN; n = 62, 8.1%), partial LN response (LNRS 1-3 ≥1 LN, residual tumor ≥1 LN; n = 155, 20.3%), poor/no LN response (LNRS 4-5; n = 303, 39.7%), or LN negative (no tumor/regression; n = 243, 31.8%) demonstrated superior discriminatory ability. Mortality was reduced in patients with complete LN response (hazard ratio [HR], 0.35; 95% CI, 0.22 to 0.56), partial LN response (HR, 0.72; 95% CI, 0.57 to 0.93) or negative LNs (HR, 0.32; 95% CI, 0.25 to 0.42) compared with those with poor/no LN response. Primary tumor regression and LN regression were discordant in 165 patients (21.9%). CONCLUSION: Pathologic LN regression after neoadjuvant chemotherapy was a strong prognostic factor and provides important information beyond pathologic TNM staging and primary tumor regression grading. LN regression should be included as standard in the pathologic reporting of esophagectomy specimens.


Subject(s)
Adenocarcinoma , Esophageal Neoplasms , Lymph Nodes , Humans , Adenocarcinoma/drug therapy , Adenocarcinoma/surgery , Adenocarcinoma/pathology , Cohort Studies , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/surgery , Esophagectomy , Lymph Nodes/surgery , Lymph Nodes/pathology , Neoadjuvant Therapy , Neoplasm Staging , Neoplasm, Residual/pathology , Prognosis , United Kingdom
12.
bioRxiv ; 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37461560

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a malady of multiple cell types associated with hepatocyte triglyceride (TG) accumulation, macrophage inflammation, and stellate cell-induced fibrosis, with no approved therapeutics yet available. Here, we report that stellate cell fatty acid synthase (FASN) in de novo lipogenesis drives the autophagic flux that is required for stellate cell activation and fibrotic collagen production. Further, we employ a dual targeting approach to NASH that selectively depletes collagen through selective stellate cell knockout of FASN (using AAV9-LRAT Cre in FASNfl/fl mice), while lowering hepatocyte triglyceride by depleting DGAT2 with a GalNac-conjugated, fully chemically modified siRNA. DGAT2 silencing in hepatocytes alone or in combination with stellate cell FASNKO reduced liver TG accumulation in a choline-deficient NASH mouse model, while FASNKO in hepatocytes alone (using AAV8-TBG Cre in FASNfl/fl mice) did not. Neither hepatocyte DGAT2 silencing alone nor FASNKO in stellate cells alone decreased fibrosis (total collagen), while loss of both DGAT2 plus FASN caused a highly significant attenuation of NASH. These data establish proof of concept that dual targeting of DGAT2 plus FASN alleviates NASH progression in mice far greater than targeting either gene product alone.

13.
Cell Rep ; 42(5): 112488, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37163372

ABSTRACT

Disruption of adipocyte de novo lipogenesis (DNL) by deletion of fatty acid synthase (FASN) in mice induces browning in inguinal white adipose tissue (iWAT). However, adipocyte FASN knockout (KO) increases acetyl-coenzyme A (CoA) and malonyl-CoA in addition to depletion of palmitate. We explore which of these metabolite changes triggers adipose browning by generating eight adipose-selective KO mouse models with loss of ATP-citrate lyase (ACLY), acetyl-CoA carboxylase 1 (ACC1), ACC2, malonyl-CoA decarboxylase (MCD) or FASN, or dual KOs ACLY/FASN, ACC1/FASN, and ACC2/FASN. Preventing elevation of acetyl-CoA and malonyl-CoA by depletion of adipocyte ACLY or ACC1 in combination with FASN KO does not block the browning of iWAT. Conversely, elevating malonyl-CoA levels in MCD KO mice does not induce browning. Strikingly, adipose ACC1 KO induces a strong iWAT thermogenic response similar to FASN KO while also blocking malonyl-CoA and palmitate synthesis. Thus, ACC1 and FASN are strong suppressors of adipocyte thermogenesis through promoting lipid synthesis rather than modulating the DNL intermediates acetyl-CoA or malonyl-CoA.


Subject(s)
Acetyl-CoA Carboxylase , Adipocytes , Mice , Animals , Acetyl-CoA Carboxylase/metabolism , Acetyl Coenzyme A/metabolism , Adipocytes/metabolism , Mice, Knockout , Fatty Acid Synthases/metabolism , Thermogenesis , Palmitates/metabolism
14.
bioRxiv ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37205462

ABSTRACT

Circulating lactate is a fuel source for liver metabolism but may exacerbate metabolic diseases such as nonalcoholic steatohepatitis (NASH). Indeed, haploinsufficiency of lactate transporter monocarboxylate transporter 1 (MCT1) in mice reportedly promotes resistance to hepatic steatosis and inflammation. Here, we used adeno-associated virus (AAV) vectors to deliver thyroxin binding globulin (TBG)-Cre or lecithin-retinol acyltransferase (Lrat)-Cre to MCT1fl/fl mice on a choline deficient, high fat NASH diet to deplete hepatocyte or stellate cell MCT1, respectively. Stellate cell MCT1KO (AAV-Lrat-Cre) attenuated liver type 1 collagen protein expression and caused a downward trend in trichrome staining. MCT1 depletion in cultured human LX2 stellate cells also diminished collagen 1 protein expression. Tetra-ethylenglycol-cholesterol (Chol)-conjugated siRNAs, which enter all hepatic cell types, and hepatocyte-selective tri-N-acetyl galactosamine (GN)-conjugated siRNAs were then used to evaluate MCT1 function in a genetically obese NASH mouse model. MCT1 silencing by Chol-siRNA decreased liver collagen 1 levels, while hepatocyte-selective MCT1 depletion by AAV-TBG-Cre or by GN-siRNA unexpectedly increased collagen 1 and total fibrosis without effect on triglyceride accumulation. These findings demonstrate that stellate cell lactate transporter MCT1 significantly contributes to liver fibrosis through increased collagen 1 protein expression in vitro and in vivo, while hepatocyte MCT1 appears not to be an attractive therapeutic target for NASH.

15.
Ir J Med Sci ; 192(6): 3051-3062, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37081289

ABSTRACT

BACKGROUND/AIMS: Data are limited on the frequency of 'consensus decisions' between sub-specialists attending a neurovascular multidisciplinary meeting (MDM) regarding management of patients with extracranial carotid/vertebral stenoses and post-MDM 'adherence' to such advice. METHODS: This prospective audit/quality improvement project collated prospectively-recorded data from a weekly Neurovascular/Stroke Centre MDM documenting the proportion of extracranial carotid/vertebral stenosis patients in whom 'consensus management decisions' were reached by neurologists, vascular surgeons, stroke physicians-geriatricians and neuroradiologists. Adherence to MDM advice was analysed in asymptomatic carotid stenosis (ACS), symptomatic carotid stenosis (SCS), 'indeterminate symptomatic status stenosis' (ISS) and vertebral artery stenosis (VAS) patients, including intervals between index event to MDM + / - intervention. RESULTS: One hundred fifteen patients were discussed: 108 with carotid stenosis and 7 with VAS. Consensus regarding management was noted in 96.5% (111/115): 100% with ACS and VAS, 96.2% with SCS and 92.9% with ISS. Adherence to MDM management advice was 96.4% (107/111): 100% in ACS, ISS and VAS patients; 92% (46/50) in SCS patients. The median interval from index symptoms to revascularisation in 50-99% SCS patients was 12.5 days (IQR: 9-18.3 days; N = 26), with a median interval from MDM to revascularisation of 5.5 days (IQR: 1-7 days). Thirty patients underwent revascularisation. Two out of twenty-nine patients (6.9%) with either SCS or ISS had a peri-procedural ipsilateral ischaemic stroke, with no further strokes/deaths during 3-months follow-up. CONCLUSIONS: The high frequency of inter-specialty consensus regarding management and adherence to proposed treatment supports a collaborative/multidisciplinary model of care in patients with extracranial arterial stenoses. Service development should aim to shorten times between MDM discussion-intervention and optimise prevention of stroke/death.


Subject(s)
Brain Ischemia , Carotid Stenosis , Endarterectomy, Carotid , Stroke , Humans , Carotid Stenosis/surgery , Stroke/prevention & control , Constriction, Pathologic/etiology , Consensus , Treatment Outcome , Risk Factors
16.
Nat Commun ; 14(1): 1362, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36914626

ABSTRACT

Adipocytes robustly synthesize fatty acids (FA) from carbohydrate through the de novo lipogenesis (DNL) pathway, yet surprisingly DNL contributes little to their abundant triglyceride stored in lipid droplets. This conundrum raises the hypothesis that adipocyte DNL instead enables membrane expansions to occur in processes like autophagy, which requires an abundant supply of phospholipids. We report here that adipocyte Fasn deficiency in vitro and in vivo markedly impairs autophagy, evident by autophagosome accumulation and severely compromised degradation of the autophagic substrate p62. Our data indicate the impairment occurs at the level of autophagosome-lysosome fusion, and indeed, loss of Fasn decreases certain membrane phosphoinositides necessary for autophagosome and lysosome maturation and fusion. Autophagy dependence on FA produced by Fasn is not fully alleviated by exogenous FA in cultured adipocytes, and interestingly, imaging studies reveal that Fasn colocalizes with nascent autophagosomes. Together, our studies identify DNL as a critical source of FAs to fuel autophagosome and lysosome maturation and fusion in adipocytes.


Subject(s)
Autophagosomes , Lipogenesis , Autophagosomes/metabolism , Adipocytes/metabolism , Fatty Acids/metabolism , Autophagy , Lysosomes/metabolism
17.
Eur Radiol ; 33(5): 3647-3659, 2023 May.
Article in English | MEDLINE | ID: mdl-36920518

ABSTRACT

OBJECTIVES: 2-deoxy-2[18F]Fluoro-D-glucose (FDG) PET-CT has an emerging role in assessing response to neoadjuvant therapy in oesophageal cancer. This study evaluated FDG PET-CT in predicting pathological tumour response (pTR), pathological nodal response (pNR) and survival. METHODS: Cohort study of 75 patients with oesophageal or oesophago-gastric junction (GOJ) adenocarcinoma treated with neoadjuvant chemotherapy then surgery at Guy's and St Thomas' NHS Foundation Trust, London (2017-2020). Standardised uptake value (SUV) metrics on pre- and post-treatment FDG PET-CT in the primary tumour (mTR) and loco-regional lymph nodes (mNR) were derived. Optimum SUVmax thresholds for predicting pathological response were identified using receiver operating characteristic analysis. Predictive accuracy was compared to PERCIST (30% SUVmax reduction) and MUNICON (35%) criteria. Survival was assessed using Cox regression. RESULTS: Optimum tumour SUVmax decrease for predicting pTR was 51.2%. A 50% cut-off predicted pTR with 73.5% sensitivity, 69.2% specificity and greater accuracy than PERCIST or MUNICON (area under the curve [AUC] 0.714, PERCIST 0.631, MUNICON 0.659). Using a 30% SUVmax threshold, mNR predicted pNR with high sensitivity but low specificity (AUC 0.749, sensitivity 92.6%, specificity 57.1%, p = 0.010). pTR, mTR, pNR and mNR were independent predictive factors for survival (pTR hazard ratio [HR] 0.10 95% confidence interval [CI] 0.03-0.34; mTR HR 0.17 95% CI 0.06-0.48; pNR HR 0.17 95% CI 0.06-0.54; mNR HR 0.13 95% CI 0.02-0.66). CONCLUSIONS: Metabolic tumour and nodal response predicted pTR and pNR, respectively, in patients with oesophageal or GOJ adenocarcinoma. However, currently utilised response criteria may not be optimal. pTR, mTR, pNR and mNR were independent predictors of survival. KEY POINTS: • FDG PET-CT has an emerging role in evaluating response to neoadjuvant therapy in patients with oesophageal cancer. • Prospective cohort study demonstrated that metabolic response in the primary tumour and lymph nodes was predictive of pathological response in a cohort of patients with adenocarcinoma of the oesophagus or oesophago-gastric junction treated with neoadjuvant chemotherapy followed by surgical resection. • Patients who demonstrated a response to neoadjuvant chemotherapy in the primary tumour or lymph nodes on FDG PET-CT demonstrated better survival and reduced rates of tumour recurrence.


Subject(s)
Adenocarcinoma , Esophageal Neoplasms , Humans , Positron Emission Tomography Computed Tomography , Fluorodeoxyglucose F18 , Neoadjuvant Therapy , Radiopharmaceuticals/therapeutic use , Cohort Studies , Prospective Studies , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/drug therapy , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/drug therapy , Positron-Emission Tomography
19.
J Mol Biol ; 435(2): 167913, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36495919

ABSTRACT

The H3K4me3 chromatin modification, a hallmark of promoters of actively transcribed genes, is dynamically removed by the KDM5 family of histone demethylases. The KDM5 demethylases have a number of accessory domains, two of which, ARID and PHD1, lie between the segments of the catalytic domain. KDM5C, which has a unique role in neural development, harbors a number of mutations adjacent to its accessory domains that cause X-linked intellectual disability (XLID). The roles of these accessory domains remain unknown, limiting an understanding of how XLID mutations affect KDM5C activity. Through in vitro binding and kinetic studies using nucleosomes, we find that while the ARID domain is required for efficient nucleosome demethylation, the PHD1 domain alone has an inhibitory role in KDM5C catalysis. In addition, the unstructured linker region between the ARID and PHD1 domains interacts with PHD1 and is necessary for nucleosome binding. Our data suggests a model in which the PHD1 domain inhibits DNA recognition by KDM5C. This inhibitory effect is relieved by the H3 tail, enabling recognition of flanking DNA on the nucleosome. Importantly, we find that XLID mutations adjacent to the ARID and PHD1 domains break this regulation by enhancing DNA binding, resulting in the loss of specificity of substrate chromatin recognition and rendering demethylase activity lower in the presence of flanking DNA. Our findings suggest a model by which specific XLID mutations could alter chromatin recognition and enable euchromatin-specific dysregulation of demethylation by KDM5C.


Subject(s)
Chromatin , Histone Demethylases , Mental Retardation, X-Linked , Humans , Chromatin/genetics , Chromatin/metabolism , DNA/chemistry , DNA/metabolism , Histone Demethylases/chemistry , Histone Demethylases/genetics , Histone Demethylases/metabolism , Kinetics , Mental Retardation, X-Linked/genetics , Mutation , Nucleosomes/genetics , Nucleosomes/metabolism , Protein Binding , Protein Domains
20.
Psychol Trauma ; 15(2): 340-348, 2023 Feb.
Article in English | MEDLINE | ID: mdl-34591538

ABSTRACT

OBJECTIVE: Police officers experience many traumatic events over the course of their career, often resulting in posttraumatic stress disorder (PTSD) and associated psychological distress. Studies have investigated the efficacy of interventions aimed at reducing symptoms of PTSD experienced by police officers, but lacking are studies investigating the impact of PTSD on positivity, a construct we define as a latent variable estimated using self-report measures of optimism, gratitude, self-compassion, and mindfulness. The present study carried out a path analysis of a model testing the hypothesis that PTSD would be associated with increased psychological distress and decreased positivity, both of which influence well-being. The model also evaluated associations between constructs that could be modified through interventions to increase well-being-associations between posttraumatic growth, social support, physical activity and psychological distress, positivity, and well-being. METHOD: Police officers (n = 506) completed an online survey that included self-report measures of the constructs included in the model being tested. RESULTS: The model tested produced fit indices of root mean square error of approximation (RMSEA) = .089; comparative fit index (CFI) = .960; Tucker-Lewis index (TLI) = .93; standardized root mean square residual (SRMR) = .041 and R² = .79. Results found that neither PTSD or psychological distress had a direct effect on well-being. Psychological distress indirectly influenced well-being by lowering levels of positivity, while positivity was associated with higher scores on the measure of well-being. CONCLUSIONS: The implication of the results is that interventions aimed at enhancing positivity could be expected to improve well-being in police officers and offering traditional therapies together with positivity enhancing therapies may have additional benefits over either alone. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Stress Disorders, Post-Traumatic , Humans , Stress Disorders, Post-Traumatic/psychology , Police/psychology , Australia , Surveys and Questionnaires , Self Report , Stress, Psychological
SELECTION OF CITATIONS
SEARCH DETAIL
...