Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters











Publication year range
1.
Front Pharmacol ; 15: 1426446, 2024.
Article in English | MEDLINE | ID: mdl-39070793

ABSTRACT

Introduction: Preclinical studies suggest that cannabinoid receptor type 2 (CB2R) activation has a therapeutic effect in animal models on chronic inflammation and vascular permeability, which are key pathological features of diabetic retinopathy (DR). A novel CB2R agonist, triazolopyrimidine RG7774, was generated through lead optimization of a high-throughput screening hit. The aim of this study was to characterize the pharmacology, absorption, distribution, metabolism, elimination, and toxicity (ADMET) profile of RG7774, and to explore its potential for managing the key pathological features associated with retinal disease in rodents. Methods: The in vitro pharmacology of RG7774 was investigated for CB2R binding and receptor activation using recombinant human and mouse CB2R expression in Chinese hamster ovary cells, and endogenous CB2R expression in human Jurkat cells, and rat and mouse spleen cells. The ADMET profile was evaluated and the effects of RG7774 on retinal permeability, leukocyte adhesion, and choroidal neovascularization (CNV) were investigated in rodent models of retinal disease. Pharmacokinetic (PK) parameters and the exposure-response relationship were characterized in healthy animals and in animals with laser-induced CNV. Results: RG7774 was found to be a potent (EC50: 2.8 nM and Ki: 51.3 nM), selective, and full CB2R agonist with no signs of cannabinoid receptor type 1 (CB1R) binding or activation. The ligand showed a favorable ADMET profile and exhibited systemic and ocular exposure after oral delivery. Functional potency in vitro translated from recombinant to endogenous expression systems. In vivo, orally administered RG7774 reduced retinal permeability and leukocyte adhesion in rodents with lipopolysaccharide (LPS)-induced uveitis and streptozotocin (STZ)-induced DR, and reduced lesion areas in rats with laser-induced CNV with an ED50 of 0.32 mg/kg. Anatomically, RG7774 reduced the migration of retinal microglia to retinal lesions. Discussion: RG7774 is a novel, highly selective, and orally bioavailable CB2R agonist, with an acceptable systemic and ocular PK profile, and beneficial effects on retinal vascular permeability, leukocyte adhesion, and ocular inflammation in rodent animal models. Results support the development of RG7774 as a potential treatment for retinal diseases with similar pathophysiologies as addressed by the animal models.

2.
Biomedicines ; 12(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38790962

ABSTRACT

Inflammatory bowel disease (IBD) is a group of chronic disorders characterized by pain, ulceration, and the inflammation of the gastrointestinal tract (GIT) and categorized into two major subtypes: ulcerative colitis (UC) and Crohn's disease. The inflammation in UC is typically restricted to the mucosal surface, beginning in the rectum and extending through the entire colon. UC patients typically show increased levels of pro-inflammatory cytokines, leading to intestinal epithelial apoptosis and mucosal inflammation, which impair barrier integrity. Chronic inflammation is associated with the rapid recruitment and inappropriate retention of leukocytes at the site of inflammation, further amplifying the inflammation. While UC can be managed using a number of treatments, these drugs are expensive and cause unwanted side effects. Therefore, a safe and effective treatment for UC patients is needed. Palmitoylethanolamide (PEA) is an endogenous fatty acid amide and an analog of the endocannabinoid anandamine. PEA administration has been found to normalize intestinal GIT motility and reduce injury in rodents and humans. In the current study, we examined the efficacy of PEA encapsulated in phytosomes following oral administration in experimental ulcerative colitis. Here, we showed that PEA at a human-equivalent dose of 123 mg/kg (OD or BID) attenuated DSS-induced experimental colitis as represented by the reduction in clinical signs of colitis, reduction in gross mucosal injury, and suppression of leukocyte recruitment at inflamed venules. These findings add to the growing body of data demonstrating the beneficial effects of PEA to control the acute phase of intestinal inflammation occurring during UC.

3.
ACS Pharmacol Transl Sci ; 7(5): 1348-1363, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38751621

ABSTRACT

Microglia are resident immune cells of the central nervous system (CNS) and propagate inflammation following damage to the CNS, including the retina. Proliferative vitreoretinopathy (PVR) is a condition that can emerge following retinal detachment and is characterized by severe inflammation and microglial proliferation. The type 2 cannabinoid receptor (CB2) is an emerging pharmacological target to suppress microglial-mediated inflammation when the eyes or brain are damaged. CB2-knockout mice have exacerbated inflammation and retinal pathology during experimental PVR. We aimed to assess the anti-inflammatory effects of CB2 stimulation in the context of retinal damage and also explore the mechanistic roles of CB2 in microglia function. To target CB2, we used a highly selective agonist, HU-308, as well as its enantiomer, HU-433, which is a putative selective agonist. First, ß-arrestin2 and Gαi recruitment was measured to compare activation of human CB2 in an in vitro heterologous expression system. Both agonists were then utilized in a mouse model of PVR, and the effects on retinal damage, inflammation, and cell death were assessed. Finally, we used an in vitro model of microglia to determine the effects of HU-308 and HU-433 on phagocytosis, cytokine release, migration, and intracellular signaling. We observed that HU-308 more strongly recruited both ß-arrestin2 and Gαi compared to HU-433. Stimulation of CB2 with either drug effectively blunted LPS- and IFNγ-mediated signaling as well as NO and TNF release from microglia. Furthermore, both drugs reduced IL-6 accumulation, total caspase-3 cleavage, and retinal pathology following the induction of PVR. Ultimately, this work supports that CB2 is a valuable target for drugs to suppress inflammation and cell death associated with infection or sterile retinopathy, although the magnitude of effector recruitment may not be predictive of anti-inflammatory capacity.

4.
Article in English | MEDLINE | ID: mdl-37815809

ABSTRACT

Background: The underlying pathomechanism of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is the immune response to inflammation or infection within the pulmonary microcirculation. Systemic spread of pathogens, activated immune cells, and inflammatory mediators contributes significantly to mortality in patients with ARDS. Objective: The endogenous cannabinoid system is a major modulator of the immune response during inflammation and infection. Phytocannabinoids, such as cannabidiol (CBD), have shown promising anti-inflammatory effects in several pathologies. The overall objective of this study was to evaluate the effects of CBD on local and systemic inflammation in endotoxin-induced ALI in mice. Materials and Methods: ALI was induced by pulmonary endotoxin challenge. Four groups of male C57BL/6 mice were randomized in this study: control, ALI, ALI with CBD treatment, and control with CBD treatment. Analyses of local and systemic cytokine levels, lung histology, and leukocyte activation as visualized by intravital microscopy of the intestinal and pulmonary microcirculation were performed 6 h following intranasal endotoxin administration. Results: Pulmonary endotoxin challenge induced significant inflammation evidenced by local and systemic cytokine and chemokine release, lung histopathology, and leukocyte adhesion. Intraperitoneal CBD treatment resulted in a significant decrease in systemic inflammation as shown by reduced leukocyte adhesion in the intestinal microcirculation and reduced plasma cytokine and chemokine levels. Pulmonary chemokine levels were decreased, while pulmonary cytokine levels were unchanged. Surprisingly, the ALI score was slightly increased by CBD treatment in a manner driven by enhanced neutrophil infiltration of the alveoli. Conclusion: In this model of experimental ALI, CBD administration was associated with reduced systemic inflammation and heterogeneous effects on pulmonary inflammation. Future studies should explore the mechanisms involved as they relate to neutrophil infiltration and proinflammatory mediator production within the lungs.

5.
Molecules ; 28(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37241885

ABSTRACT

Beta-caryophyllene has demonstrated anti-inflammatory effects in a variety of conditions, including interstitial cystitis. These effects are mediated primarily via the activation of the cannabinoid type 2 receptor. Additional antibacterial properties have recently been suggested, leading to our investigation of the effects of beta-caryophyllene in a murine model of urinary tract infection (UTI). Female BALB/c mice were intravesically inoculated with uropathogenic Escherichia coli CFT073. The mice received either beta-caryophyllene, antibiotic treatment using fosfomycin, or combination therapy. After 6, 24, or 72 h, the mice were evaluated for bacterial burden in the bladder and changes in pain and behavioral responses using von Frey esthesiometry. In the 24 h model, the anti-inflammatory effects of beta-caryophyllene were also assessed using intravital microscopy. The mice established a robust UTI by 24 h. Altered behavioral responses persisted 72 h post infection. Treatment with beta-caryophyllene resulted in a significant reduction in the bacterial burden in urine and bladder tissues 24 h post UTI induction and significant improvements in behavioral responses and intravital microscopy parameters, representing reduced inflammation in the bladder. This study demonstrates the utility of beta-caryophyllene as a new adjunct therapy for the management of UTI.


Subject(s)
Escherichia coli Infections , Urinary Tract Infections , Female , Animals , Mice , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Urinary Tract Infections/microbiology , Analgesics/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents
6.
J Cataract Refract Surg ; 49(11): 1160-1167, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37232414

ABSTRACT

Acute corneal pain is a common complaint that causes significant distress to patients and continues to challenge therapeutic avenues for pain management. Current topical treatment options have marked limitations in terms of both efficacy and safety, thus often prompting the adjunctive use of systemic analgesics, including opioids. In general, there have not been extensive advancements in pharmacologic options for the management of corneal pain over the past several decades. Despite this, multiple promising therapeutic avenues exist which hold the potential to transform the ocular pain landscape, including druggable targets within the endocannabinoid system. This review will summarize the current evidence base for topical nonsteroidal anti-inflammatory drugs, anticholinergic agents, and anesthetics before focusing on several potential avenues in the setting of acute corneal pain management, including autologous tear serum, topical opioids and endocannabinoid system modulators.


Subject(s)
Analgesics , Endocannabinoids , Humans , Endocannabinoids/therapeutic use , Analgesics/therapeutic use , Pain/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Pain Management , Analgesics, Opioid
7.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36555499

ABSTRACT

Acute respiratory distress syndrome (ARDS) and sepsis are risk factors contributing to mortality in patients with pneumonia. In ARDS, also termed acute lung injury (ALI), pulmonary immune responses lead to excessive pro-inflammatory cytokine release and aberrant alveolar neutrophil infiltration. Systemic spread of cytokines is associated with systemic complications including sepsis, multi-organ failure, and death. Thus, dampening pro-inflammatory cytokine release is a viable strategy to improve outcome. Activation of cannabinoid type II receptor (CB2) has been shown to reduce cytokine release in various in vivo and in vitro studies. Herein, we investigated the effect of HU-308, a specific CB2 agonist, on systemic and pulmonary inflammation in a model of pneumonia-induced ALI. C57Bl/6 mice received intranasal endotoxin or saline, followed by intravenous HU-308, dexamethasone, or vehicle. ALI was scored by histology and plasma levels of select inflammatory mediators were assessed by Luminex assay. Intravital microscopy (IVM) was performed to assess leukocyte adhesion and capillary perfusion in intestinal and pulmonary microcirculation. HU-308 and dexamethasone attenuated LPS-induced cytokine release and intestinal microcirculatory impairment. HU-308 modestly reduced ALI score, while dexamethasone abolished it. These results suggest administration of HU-308 can reduce systemic inflammation without suppressing pulmonary immune response in pneumonia-induced ALI and systemic inflammation.


Subject(s)
Acute Lung Injury , Cannabinoids , Pneumonia , Respiratory Distress Syndrome , Sepsis , Mice , Animals , Endotoxins/adverse effects , Microcirculation , Pneumonia/drug therapy , Pneumonia/etiology , Pneumonia/pathology , Inflammation/pathology , Lung/pathology , Cannabinoids/adverse effects , Acute Lung Injury/etiology , Acute Lung Injury/chemically induced , Cytokines , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Lipopolysaccharides/toxicity , Dexamethasone/adverse effects , Mice, Inbred C57BL
8.
Clin Exp Immunol ; 207(1): 3-10, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35020852

ABSTRACT

B-cell-depleting agents are among the most commonly used drugs to treat haemato-oncological and autoimmune diseases. They rapidly induce a state of peripheral B-cell aplasia with the potential to interfere with nascent vaccine responses, particularly to novel antigens. We have examined the relationship between B-cell reconstitution and SARS-CoV-2 vaccine responses in two cohorts of patients previously exposed to B-cell-depleting agents: a cohort of patients treated for haematological B-cell malignancy and another treated for rheumatological disease. B-cell depletion severely impairs vaccine responsiveness in the first 6 months after administration: SARS-CoV-2 antibody seroprevalence was 42.2% and 33.3% in the haemato-oncological patients and rheumatology patients, respectively and 22.7% in patients vaccinated while actively receiving anti-lymphoma chemotherapy. After the first 6 months, vaccine responsiveness significantly improved during early B-cell reconstitution; however, the kinetics of reconstitution was significantly faster in haemato-oncology patients. The AstraZeneca ChAdOx1 nCoV-19 vaccine and the Pfizer BioNTech 162b vaccine induced equivalent vaccine responses; however, shorter intervals between vaccine doses (<1 m) improved the magnitude of the antibody response in haeamto-oncology patients. In a subgroup of haemato-oncology patients, with historic exposure to B-cell-depleting agents (>36 m previously), vaccine non-responsiveness was independent of peripheral B-cell reconstitution. The findings have important implications for primary vaccination and booster vaccination strategies in individuals clinically vulnerable to SARS-CoV-2.


Subject(s)
COVID-19 , Rheumatic Diseases , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , Rheumatic Diseases/drug therapy , SARS-CoV-2 , Seroepidemiologic Studies
9.
Neurourol Urodyn ; 40(7): 1704-1719, 2021 09.
Article in English | MEDLINE | ID: mdl-34350618

ABSTRACT

AIMS: Long-term or recreational use of ketamine affects the urinary system and can result in ketamine-induced cystitis (KIC). Rodent models of KIC are important to study KIC pathophysiology and are paramount to the future development of therapies for this painful condition. This review aims to provide a summary of rodent models of KIC, focusing on disease induction, experimental methods, and pathological features of the model. METHOD: A literature search was performed using the National Center for Biotechnology Information (NCBI) Pubmed database up to March 2021. 20 articles met the inclusion criteria and were finally selected. RESULTS: There are considerable variations in the rodent models used for studying KIC in terms of the strain of the animal being used; dose, duration, and route of ketamine administration to induce KIC, and assessment of pathological features. CONCLUSION: KIC remains difficult to fully recapitulate in humans. Improved characterization of KIC models and the experimental parameters and meticulous discussion on translational limitations are required to improve the translational value of research using rodent models of KIC.


Subject(s)
Cystitis , Ketamine , Animals , Cystitis/chemically induced , Ketamine/toxicity , Rodentia
10.
Cannabis Cannabinoid Res ; 6(4): 327-339, 2021 08.
Article in English | MEDLINE | ID: mdl-33998888

ABSTRACT

Introduction: Acute central nervous system (CNS) injury, such as stroke, spinal cord injury, or traumatic brain injury can result in dysregulated immune response, and the condition is known as CNS injury-induced immunodeficiency syndrome (CIDS). The endocannabinoid system is an important homeostatic regulator in the CNS and immune system. Activation of cannabinoid 2 receptors (CB2R) on immune cells has been reported to dampen inflammation, suggesting a potential role of CB2R in the peripheral immune response following CNS injury. In this study, we have investigated the effect of CB2R modulation on the peripheral immune response during CIDS. Materials and Methods: Experimental CNS injury was induced in C57BL/6 mice through intracerebral injection of the vasopressor peptide, endothelin-1. A selective CB2R agonist (HU308) was used as an early treatment before the onset of CIDS and AM630, a selective CB2R antagonist, was administered as a later-phase therapy to combat the systemic immunodeficiency following the CNS injury. The peripheral immune response to endotoxin was studied 24 h after the CNS injury using intravital microscopy to examine leukocyte activation within the intestinal microcirculation in mice. Brain infarct size, and plasma levels of cytokines and soluble adhesion molecules were measured as additional parameters for the assessment of treatment outcomes. Results: Our results showed that early CB2R activation with HU308 reduced brain injury size and restored leukocyte response to endotoxin in the peripheral microcirculation. Late CB2R inhibition with AM630 also improved the peripheral leukocyte response to endotoxin and did not exacerbate the extent of brain injury. Discussion: CB2R activation has the potential to mitigate CNS injury as an early treatment by limiting neuroinflammation and preventing the development of CIDS. At the later stage with already-established CIDS, treatment may require dampening CB2R activation to improve the patient's outcome.


Subject(s)
Cannabinoids , Neuroinflammatory Diseases , Animals , Central Nervous System , Disease Models, Animal , Immunity , Mice , Mice, Inbred C57BL , Receptors, Cannabinoid
11.
J Med Chem ; 64(12): 8104-8126, 2021 06 24.
Article in English | MEDLINE | ID: mdl-33826336

ABSTRACT

We apply the magic methyl effect to improve the potency/efficacy of GAT211, the prototypic 2-phenylindole-based cannabinoid type-1 receptor (CB1R) agonist-positive allosteric modulator (ago-PAM). Introducing a methyl group at the α-position of nitro group generated two diastereomers, the greater potency and efficacy of erythro, (±)-9 vs threo, (±)-10 constitutes the first demonstration of diastereoselective CB1R-allosteric modulator interaction. Of the (±)-9 enantiomers, (-)-(S,R)-13 evidenced improved potency over GAT211 as a CB1R ago-PAM, whereas (+)-(R,S)-14 was a CB1R allosteric agonist biased toward G protein- vs ß-arrestin1/2-dependent signaling. (-)-(S,R)-13 and (+)-(R,S)-14 were devoid of undesirable side effects (triad test), and (+)-(R,S)-14 reduced intraocular pressure with an unprecedentedly long duration of action in a murine glaucoma model. (-)-(S,R)-13 docked into both a CB1R extracellular PAM and intracellular allosteric-agonist site(s), whereas (+)-(R,S)-14 preferentially engaged only the latter. Exploiting G-protein biased CB1R-allosteric modulation can offer safer therapeutic candidates for glaucoma and, potentially, other diseases.


Subject(s)
Cannabinoid Receptor Agonists/therapeutic use , Glaucoma/drug therapy , Indoles/therapeutic use , Receptor, Cannabinoid, CB1/agonists , Allosteric Site , Animals , CHO Cells , Cannabinoid Receptor Agonists/chemical synthesis , Cannabinoid Receptor Agonists/metabolism , Cricetulus , HEK293 Cells , Hippocampus/cytology , Humans , Indoles/chemical synthesis , Indoles/metabolism , Intraocular Pressure/drug effects , Ligands , Male , Mice, Inbred C57BL , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Neurons/drug effects , Receptor, Cannabinoid, CB1/chemistry , Receptor, Cannabinoid, CB1/metabolism , Stereoisomerism , Structure-Activity Relationship
12.
Geroscience ; 43(3): 1447-1463, 2021 06.
Article in English | MEDLINE | ID: mdl-33403617

ABSTRACT

The human brain requires adequate cerebral blood flow to meet the high demand for nutrients and to clear waste products. With age, there is a chronic reduction in cerebral blood flow in small resistance arteries that can eventually limit proper brain function. The endothelin system is a key mediator in the regulation of cerebral blood flow, but the contributions of its constituent receptors in the endothelial and vascular smooth muscle layers of cerebral arteries have not been well defined in the context of aging. We isolated posterior cerebral arteries from young and aged Fischer 344 rats, as well as ETB receptor knock-out rats and mounted the vessels in plexiglass pressure myograph chambers to measure myogenic tone in response to increasing pressure and targeted pharmacological treatments. We used an ETA receptor antagonist (BQ-123), an ETB receptor antagonist (BQ-788), endothelin-1, an endothelin-1 synthesis inhibitor (phosphoramidon), and vessel denudation to dissect the roles of each receptor in aging vasculature. Aged rats exhibited a higher myogenic tone than young rats, and the tone was sensitive to the ETA antagonist, BQ-123, but insensitive to the ETB antagonist, BQ-788. By contrast, the tone in the vessels from young rats was raised by BQ-788 but unaffected by BQ-123. When the endothelial layer that is normally enriched with ETB1 receptors was removed from young vessels, myogenic tone increased. However, denudation of the endothelial layer did not influence vessels from aged animals. This indicated that endothelial ETB1 receptors were not functional in the vessels from aged rats. There was also an increase in ETA receptor expression with age, whereas ETB receptor expression remained constant between young and aged animals. These results demonstrate that in young vessels, ETB1 receptors maintain a lower myogenic tone, but in aged vessels, a loss of ETB receptor activity allows ETA receptors in vascular smooth muscle cells to raise myogenic tone. Our findings have potentially important clinical implications for treatments to improve cerebral perfusion in older adults with diseases characterized by reduced cerebral blood flow.


Subject(s)
Cerebral Arteries , Receptor, Endothelin B , Vasoconstriction , Animals , Gene Knockout Techniques , Male , Rats , Rats, Inbred F344
13.
J Neurosci Res ; 98(12): 2496-2509, 2020 12.
Article in English | MEDLINE | ID: mdl-32881145

ABSTRACT

The cannabinoid type 1 (CB1 ) receptor and the dopamine type 2 (D2 ) receptor are co-localized on medium spiny neuron terminals in the globus pallidus where they modulate neural circuits involved in voluntary movement. Physical interactions between the two receptors have been shown to alter receptor signaling in cell culture. The objectives of the current study were to identify the presence of CB1 /D2 heteromers in the globus pallidus of C57BL/6J male mice, define how CB1 /D2 heteromer levels are altered following treatment with cannabinoids and/or antipsychotics, and determine if fluctuating levels of CB1 /D2 heteromers have functional consequences. Using in situ proximity ligation assays, we observed CB1 /D2 heteromers in the globus pallidus of C57BL/6J mice. The abundance of the heteromers increased following treatment with the nonselective cannabinoid receptor agonist, CP55,940. In contrast, treatment with the typical antipsychotic haloperidol reduced the number of CB1 /D2 heteromers, whereas the atypical antipsychotic olanzapine treatment had no effect. Co-treatment with CP55,940 and haloperidol had similar effects to haloperidol alone, whereas co-treatment with CP55,940 and olanzapine had similar effects to CP55,940. The observed changes were found to have functional consequences as the differential effects of haloperidol and olanzapine also applied to γ-aminobutyric acid release in STHdhQ7/Q7 cells and motor function in C57BL/6J male mice. This work highlights the clinical relevance of co-exposure to cannabinoids and different antipsychotics over acute and prolonged time periods.


Subject(s)
Antipsychotic Agents/administration & dosage , Cannabinoid Receptor Agonists/administration & dosage , Cannabinoids/administration & dosage , Receptor, Cannabinoid, CB1/metabolism , Receptors, Dopamine D2/metabolism , Animals , Cell Line, Transformed , Drug Therapy, Combination , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Receptor, Cannabinoid, CB1/agonists
14.
Can J Physiol Pharmacol ; 98(8): 531-540, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32744876

ABSTRACT

The endothelin receptor A (ETA) and endothelin receptor B (ETB) are G protein-coupled receptors that are co-expressed in vascular smooth muscle cells. Endothelin-1 (ET-1) activates endothelin receptors to cause microvascular vasoconstriction. Previous studies have shown that heteromerization between ETA and ETB prolongs Ca2+ transients, leading to prolongation of Gαq-dependent signaling and sustained vasoconstriction. We hypothesized that these effects are in part mediated by the resistance of ETA/ETB heteromers to ß-arrestin recruitment and subsequent desensitization. Using bioluminescence resonance energy transfer 2 (BRET2), we found that ETB has a relatively equal affinity to form either homomers or heteromers with ETA when co-expressed in the human embryonic kidney 293 (HEK293) cells. When co-expressed, activation of ETA and ETB by ET-1 caused a heteromer-specific reduction and delay in ß-arrestin-2 recruitment with a corresponding reduction and delay in ET-1-induced ETA/ETB co-internalization. Furthermore, the co-expression of ETA and ETB inhibited ET-1-induced ß-arrestin-1-dependent extracellular signal-regulated kinase (ERK) phosphorylation while prolonging ET-1-induced Gαq-dependent ERK phosphorylation. ETA/ETB heteromerization mediates the long-lasting vasoconstrictor response to ET-1 by the prolongation of Gαq-dependent signaling and inhibition of ß-arrestin function.


Subject(s)
Protein Multimerization , Receptor, Endothelin A/chemistry , Receptor, Endothelin B/chemistry , beta-Arrestins/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , HEK293 Cells , Humans , Phosphorylation , Protein Structure, Quaternary , Signal Transduction
15.
Molecules ; 25(2)2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31968549

ABSTRACT

Cannabinoid receptor 1 (CB1) activation has been reported to reduce transient receptor potential cation channel subfamily V member 1 (TRPV1)-induced inflammatory responses and is anti-nociceptive and anti-inflammatory in corneal injury. We examined whether allosteric ligands, can modulate CB1 signaling to reduce pain and inflammation in corneal hyperalgesia. Corneal hyperalgesia was generated by chemical cauterization of cornea in wildtype and CB2 knockout (CB2-/-) mice. The novel racemic CB1 allosteric ligand GAT211 and its enantiomers GAT228 and GAT229 were examined alone or in combination with the orthosteric CB1 agonist Δ8-tetrahydrocannabinol (Δ8-THC). Pain responses were assessed following capsaicin (1 µM) stimulation of injured corneas at 6 h post-cauterization. Corneal neutrophil infiltration was also analyzed. GAT228, but not GAT229 or GAT211, reduced pain scores in response to capsaicin stimulation. Combination treatments of 0.5% GAT229 or 1% GAT211 with subthreshold Δ8-THC (0.4%) significantly reduced pain scores following capsaicin stimulation. The anti-nociceptive effects of both GAT229 and GAT228 were blocked with CB1 antagonist AM251, but remained unaffected in CB2-/- mice. Two percent GAT228, or the combination of 0.2% Δ8-THC with 0.5% GAT229 also significantly reduced corneal inflammation. CB1 allosteric ligands could offer a novel approach for treating corneal pain and inflammation.


Subject(s)
Corneal Injuries/drug therapy , Dronabinol/analogs & derivatives , Hyperalgesia/drug therapy , Indoles/administration & dosage , Inflammation/drug therapy , Receptor, Cannabinoid, CB1/metabolism , Allosteric Regulation/drug effects , Animals , Cautery , Corneal Injuries/complications , Corneal Injuries/etiology , Disease Models, Animal , Dronabinol/administration & dosage , Dronabinol/pharmacology , Drug Synergism , Gene Knockout Techniques , Hyperalgesia/metabolism , Indoles/pharmacology , Inflammation/etiology , Inflammation/metabolism , Ligands , Mice , Receptor, Cannabinoid, CB1/chemistry , Receptor, Cannabinoid, CB2/genetics , Signal Transduction
16.
J Med Chem ; 63(2): 542-568, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31756109

ABSTRACT

Cannabinoid 1 receptor (CB1R) allosteric ligands hold a far-reaching therapeutic promise. We report the application of fluoro- and nitrogen-walk approaches to enhance the drug-like properties of GAT211, a prototype CB1R allosteric agonist-positive allosteric modulator (ago-PAM). Several analogs exhibited improved functional potency (cAMP, ß-arrestin 2), metabolic stability, and aqueous solubility. Two key analogs, GAT591 (6r) and GAT593 (6s), exhibited augmented allosteric-agonist and PAM activities in neuronal cultures, improved metabolic stability, and enhanced orthosteric agonist binding (CP55,940). Both analogs also exhibited good analgesic potency in the CFA inflammatory-pain model with longer duration of action over GAT211 while being devoid of adverse cannabimimetic effects. Another analog, GAT592 (9j), exhibited moderate ago-PAM potency and improved aqueous solubility with therapeutic reduction of intraocular pressure in murine glaucoma models. The SAR findings and the enhanced allosteric activity in this class of allosteric modulators were accounted for in our recently developed computational model for CB1R allosteric activation and positive allosteric modulation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Fluorine/chemistry , Indoles/chemistry , Nitrogen/chemistry , Receptor, Cannabinoid, CB1/drug effects , Allosteric Regulation/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Biotransformation , Freund's Adjuvant , HEK293 Cells , Humans , Indoles/pharmacokinetics , Indoles/pharmacology , Inflammation/chemically induced , Inflammation/prevention & control , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Receptor, Cannabinoid, CB1/agonists , Stereoisomerism , Structure-Activity Relationship
17.
Molecules ; 24(23)2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31766439

ABSTRACT

Interstitial cystitis (IC) is a chronic bladder disorder with unclear etiology. The endocannabinoid system has been identified as a key regulator of immune function, with experimental evidence for the involvement of cannabinoid receptors in bladder inflammation. This study used intravital microscopy (IVM) and behavioral testing in lipopolysaccharide-induced IC, to investigate the anti-inflammatory analgesic effects of a natural dietary sesquiterpenoid, beta-caryophyllene (BCP), which is present in cannabis among other plants, and has reported agonist actions at the cannabinoid 2 receptor (CB2R). BCP's anti-inflammatory actions were compared to the synthetic CB2R-selective cannabinoid, HU308, and to an FDA-approved clinical treatment (dimethyl sulfoxide: DMSO). IVM data revealed that intravesical instillation of BCP and/or HU308 significantly reduces the number of adhering leukocytes in submucosal bladder venules and improves bladder capillary perfusion. The effects of BCP were found to be comparable to that of the selective CB2R synthetic cannabinoid, HU308, and superior to intravesical DMSO treatment. Oral treatment with BCP was also able to reduce bladder inflammation and significantly reduced mechanical allodynia in experimental IC. Based on our findings, we believe that CB2R activation may represent a viable therapeutic target for IC, and that drugs that activate CB2R, such as the generally regarded as safe (GRAS) dietary sesquiterpenoid, BCP, may serve as an adjunct and/or alternative treatment option for alleviating symptoms of inflammation and pain in the management of IC.


Subject(s)
Cannabinoids/pharmacology , Cystitis, Interstitial/drug therapy , Hyperalgesia/drug therapy , Inflammation/drug therapy , Lipopolysaccharides/toxicity , Polycyclic Sesquiterpenes/pharmacology , Receptor, Cannabinoid, CB2/metabolism , Animals , Behavior, Animal/drug effects , Cystitis, Interstitial/chemically induced , Cystitis, Interstitial/metabolism , Cystitis, Interstitial/pathology , Disease Models, Animal , Female , Hyperalgesia/metabolism , Hyperalgesia/pathology , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Inbred BALB C
18.
Front Mol Neurosci ; 12: 257, 2019.
Article in English | MEDLINE | ID: mdl-31680861

ABSTRACT

In addition to its known actions as a non-selective cyclooxygenase (COX) 1 and 2 inhibitor, we hypothesized that indomethacin can act as an allosteric modulator of the type 1 cannabinoid receptor (CB1R) because of its shared structural features with the known allosteric modulators of CB1R. Indomethacin enhanced the binding of [3H]CP55940 to hCB1R and enhanced AEA-dependent [35S]GTPγS binding to hCB1R in Chinese hamster ovary (CHO) cell membranes. Indomethacin (1 µM) also enhanced CP55940-dependent ßarrestin1 recruitment, cAMP inhibition, ERK1/2 and PLCß3 phosphorylation in HEK293A cells expressing hCB1R, but not in cells expressing hCB2R. Finally, indomethacin enhanced the magnitude and duration of CP55940-induced hypolocomotion, immobility, hypothermia, and anti-nociception in C57BL/6J mice. Together, these data support the hypothesis that indomethacin acted as a positive allosteric modulator of hCB1R. The identification of structural and functional features shared amongst allosteric modulators of CB1R may lead to the development of novel compounds designed for greater CB1R or COX selectivity and compounds designed to modulate both the prostaglandin and endocannabinoid systems.

19.
Molecules ; 24(18)2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31540271

ABSTRACT

(1) Background: The cannabinoid 2 receptor (CB2R) is a promising anti-inflammatory drug target and development of selective CB2R ligands may be useful for treating sight-threatening ocular inflammation. (2) Methods: This study examined the pharmacology of three novel chemically-diverse selective CB2R ligands: CB2R agonists, RO6871304, and RO6871085, as well as a CB2R inverse agonist, RO6851228. In silico molecular modelling and in vitro cell-based receptor assays were used to verify CB2R interactions, binding, cell signaling (ß-arrestin and cAMP) and early absorption, distribution, metabolism, excretion, and toxicology (ADMET) profiling of these receptor ligands. All ligands were evaluated for their efficacy to modulate leukocyte-neutrophil activity, in comparison to the reported CB2R ligand, HU910, using an in vivo mouse model of endotoxin-induced uveitis (EIU) in wild-type (WT) and CB2R-/- mice. The actions of RO6871304 on neutrophil migration and adhesion were examined in vitro using isolated neutrophils from WT and CB2R-/- mice, and in vivo in WT mice with EIU using adoptive transfer of WT and CB2R-/- neutrophils, respectively. (3) Results: Molecular docking studies indicated that RO6871304 and RO6871085 bind to the orthosteric site of CB2R. Binding studies and cell signaling assays for RO6871304 and RO6871085 confirmed high-affinity binding to CB2R and selectivity for CB2R > CB1R, with both ligands acting as full agonists in cAMP and ß-arrestin assays (EC50s in low nM range). When tested in EIU, topical application of RO6871304 and RO6871085 decreased leukocyte-endothelial adhesion and this effect was antagonized by the inverse agonist, RO6851228. The CB2R agonist, RO6871304, decreased in vitro neutrophil migration of WT neutrophils but not neutrophils from CB2R-/-, and attenuated adhesion of adoptively-transferred leukocytes in EIU. (4) Conclusions: These unique ligands are potent and selective for CB2R and have good immunomodulating actions in the eye. RO6871304 and RO6871085, as well as HU910, decreased leukocyte adhesion in EIU through inhibition of resident ocular immune cells. The data generated with these three structurally-diverse and highly-selective CB2R agonists support selective targeting of CB2R for treating ocular inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Cannabinoid Receptor Agonists/administration & dosage , Endotoxins/adverse effects , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Uveitis/drug therapy , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Cannabinoid Receptor Agonists/chemistry , Cannabinoid Receptor Agonists/pharmacology , Cell Adhesion/drug effects , Cells, Cultured , Disease Models, Animal , Leukocytes/drug effects , Leukocytes/metabolism , Male , Mice , Mice, Knockout , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Neutrophils/drug effects , Neutrophils/metabolism , Receptor, Cannabinoid, CB2/chemistry , Receptor, Cannabinoid, CB2/genetics , Signal Transduction , Uveitis/chemically induced , Uveitis/immunology
20.
Methods Mol Biol ; 1947: 199-215, 2019.
Article in English | MEDLINE | ID: mdl-30969418

ABSTRACT

G protein-coupled receptors (GPCRs) are the target for many drugs. Evidence continues to accumulate demonstrating that multiple receptors form homo- and heteromeric complexes, which in turn dynamically couple with G proteins, and other interacting proteins. Here, we describe a method to simultaneously determine the identity of up to four distinct constituents of GPCR complexes using a combination of sequential bioluminescence resonance energy transfer 2-fluorescence resonance energy transfer (SRET2) with bimolecular fluorescence complementation (BiFC). The method is amenable to moderate throughput screening of changes in response to ligands and time-course analysis of protein-protein oligomerization.


Subject(s)
Bioluminescence Resonance Energy Transfer Techniques/methods , Fluorescence Resonance Energy Transfer/methods , Fluorescent Antibody Technique/methods , Luciferases, Renilla/metabolism , Protein Multimerization , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Fluorescence , Humans , Microscopy, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL