Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Data Brief ; 52: 110027, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38328501

ABSTRACT

A primary dataset capturing five distinct types of sheep activities in realistic settings was constructed at various resolutions and viewing angles, targeting the expansion of the domain knowledge for non-contact virtual fencing approaches. The present dataset can be used to develop non-invasive approaches for sheep activity detection, which can be proven useful for farming activities including, but not limited to, sheep counting, virtual fencing, behavior detection for health status, and effective sheep breeding. Sheep activity classes include grazing, running, sitting, standing, and walking. The activities of individuals, as well as herds of sheep, were recorded at different resolutions and angles to provide a dataset of diverse characteristics, as summarized in Table 1. Overall, a total of 149,327 frames from 417 videos (the equivalent of 59 minutes of footage) are presented with a balanced set for each activity class, which can be utilized for robust non-invasive detection models based on computer vision techniques. Despite a decent existence of noise within the original data (e.g., segments with no sheep present, multiple sheep in single frames, multiple activities by one or more sheep in single as well as multiple frames, segments with sheep alongside other non-sheep objects), we provide original videos and the original videos' frames (with videos and frames containing humans omitted for privacy reasons). The present dataset includes diverse sheep activity characteristics and can be useful for robust detection and recognition models, as well as advanced activity detection models as a function of time for the applications.

2.
PLoS Biol ; 21(12): e3002397, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38051702

ABSTRACT

Since they emerged approximately 125 million years ago, flowering plants have evolved to dominate the terrestrial landscape and survive in the most inhospitable environments on earth. At their core, these adaptations have been shaped by changes in numerous, interconnected pathways and genes that collectively give rise to emergent biological phenomena. Linking gene expression to morphological outcomes remains a grand challenge in biology, and new approaches are needed to begin to address this gap. Here, we implemented topological data analysis (TDA) to summarize the high dimensionality and noisiness of gene expression data using lens functions that delineate plant tissue and stress responses. Using this framework, we created a topological representation of the shape of gene expression across plant evolution, development, and environment for the phylogenetically diverse flowering plants. The TDA-based Mapper graphs form a well-defined gradient of tissues from leaves to seeds, or from healthy to stressed samples, depending on the lens function. This suggests that there are distinct and conserved expression patterns across angiosperms that delineate different tissue types or responses to biotic and abiotic stresses. Genes that correlate with the tissue lens function are enriched in central processes such as photosynthetic, growth and development, housekeeping, or stress responses. Together, our results highlight the power of TDA for analyzing complex biological data and reveal a core expression backbone that defines plant form and function.


Subject(s)
Magnoliopsida , Magnoliopsida/genetics , Plants/genetics , Stress, Physiological/genetics , Plant Leaves/genetics , Gene Expression , Gene Expression Regulation, Plant/genetics
3.
Virtual Real ; 27(2): 1173-1185, 2023.
Article in English | MEDLINE | ID: mdl-36533193

ABSTRACT

Quantitative methods have thus far been the predominant methodological stance of virtual presence research, leaving much to be desired in terms of qualitative understanding. Yet, virtual experiences are a highly personal engagement, unique to each individual, and their presence in virtual reality can be viewed in terms of its experiential individuality. This aspect of the virtual experience is overlooked by conventional quantitative methods, which clusters ratings or scores to form group deductions. Therefore, to address the qualitative gap in the literature and provide an appropriate examination of virtual experiences from the perspective of the individual, an Interpretative Phenomenological Approach was undertaken. This alternate methodology sought to reveal which aspects of virtual experiences users identify as enabling feelings of presence. Examination of common themes among accounts of individuals were performed, to investigate the generation of feelings of presence in virtual reality. Online recruitment provided six interviewees who participated in online semi-structured interviews, prior to Interpretive Phenomenological Analysis. Three superordinate themes were identified: visual satisfaction, freedom of interaction and suspension of real life. Expectance, realism and prevention of disbelief are among the sub-themes identified that contributed to the interviewee's highly present experiences. The identified themes demonstrated the greatest influences of enabling a deeper sense of presence, in turn enhancing their experiences within virtual reality. In acknowledging these mitigating influences, it is hoped this may enable future virtual systems to build upon the research provided and produce consistently high-presence experiences. Consequently, this can aid educational, therapeutic and entertainment applications of virtual reality.

4.
Elife ; 102021 12 31.
Article in English | MEDLINE | ID: mdl-34792466

ABSTRACT

Agricultural soil harbors a diverse microbiome that can form beneficial relationships with plants, including the inhibition of plant pathogens. Pseudomonas spp. are one of the most abundant bacterial genera in the soil and rhizosphere and play important roles in promoting plant health. However, the genetic determinants of this beneficial activity are only partially understood. Here, we genetically and phenotypically characterize the Pseudomonas fluorescens population in a commercial potato field, where we identify strong correlations between specialized metabolite biosynthesis and antagonism of the potato pathogens Streptomyces scabies and Phytophthora infestans. Genetic and chemical analyses identified hydrogen cyanide and cyclic lipopeptides as key specialized metabolites associated with S. scabies inhibition, which was supported by in planta biocontrol experiments. We show that a single potato field contains a hugely diverse and dynamic population of Pseudomonas bacteria, whose capacity to produce specialized metabolites is shaped both by plant colonization and defined environmental inputs.


Potato scab and blight are two major diseases which can cause heavy crop losses. They are caused, respectively, by the bacterium Streptomyces scabies and an oomycete (a fungus-like organism) known as Phytophthora infestans. Fighting these disease-causing microorganisms can involve crop management techniques ­ for example, ensuring that a field is well irrigated helps to keep S. scabies at bay. Harnessing biological control agents can also offer ways to control disease while respecting the environment. Biocontrol bacteria, such as Pseudomonas, can produce compounds that keep S. scabies and P. infestans in check. However, the identity of these molecules and how irrigation can influence Pseudomonas population remains unknown. To examine these questions, Pacheco-Moreno et al. sampled and isolated hundreds of Pseudomonas strains from a commercial potato field, closely examining the genomes of 69 of these. Comparing the genetic information of strains based on whether they could control the growth of S. scabies revealed that compounds known as cyclic lipopeptides are key to controlling the growth of S. scabies and P. infestans. Whether the field was irrigated also had a large impact on the strains forming the Pseudomonas population. Working out how Pseudomonas bacteria block disease could speed up the search for biological control agents. The approach developed by Pacheco-Moreno et al. could help to predict which strains might be most effective based on their genetic features. Similar experiments could also work for other combinations of plants and diseases.


Subject(s)
Phytophthora infestans/physiology , Plant Diseases/microbiology , Pseudomonas fluorescens/genetics , Solanum tuberosum/microbiology , Streptomyces/physiology , Hydrogen Cyanide/metabolism , Lipopeptides/metabolism , Peptides, Cyclic/metabolism , Pseudomonas fluorescens/metabolism
5.
Plants (Basel) ; 10(3)2021 Mar 14.
Article in English | MEDLINE | ID: mdl-33799394

ABSTRACT

The photon flux density (PFD) and spectrum regulate the growth, quality attributes, and postharvest physiology of leafy vegetables grown indoors. However, limited information is available on how a photon spectrum enriched with a broad range of different wavebands regulates these factors. To determine this, we grew baby-leaf lettuce 'Rouxai' under a PFD of 200 µmol m-2 s-1 provided by warm-white (WW; control) light-emitting diodes (LEDs) supplemented with either 30 µmol m-2 s-1 of ultraviolet-A (+UV30) or 50 µmol m-2 s-1 of blue (+B50), green (+G50), red (+R50), or WW (+WW50) light. We then quantified growth attributes and accumulated secondary metabolites at harvest and during storage in darkness at 5 °C. Additional +G50 light increased shoot fresh and dry weight by 53% and 59% compared to the control. Relative chlorophyll concentration increased under +UV30, +G50, and especially +B50. At harvest, +B50 increased total phenolic content (TPC) by 25% and anthocyanin content (TAC) by 2.0-fold. Additionally, +G50 increased antiradical activity (DPPH) by 29%. After each day of storage, TPC decreased by 2.9 to 7.1% and DPPH by 3.0 to 6.2%, while TAC degradation was less pronounced. Principal component analysis indicated a distinct effect of +G50 on the lettuce at harvest. However, concentrations of metabolites before and during storage were usually greatest under the +B50 and +R50 treatments.

6.
J Biol Chem ; 281(10): 6699-706, 2006 Mar 10.
Article in English | MEDLINE | ID: mdl-16407216

ABSTRACT

The IkappaB kinase (IKK) complex consists of the catalytic subunits IKKalpha and IKKbeta and a regulatory subunit, IKKgamma/NEMO. Even though IKKalpha and IKKbeta share significant sequence similarity, they have distinct biological roles. It has been demonstrated that IKKs are involved in regulating the proliferation of both normal and tumor cells, although the mechanisms by which they function in this process remain to be better defined. In this study, we demonstrate that IKKalpha, but not IKKbeta, is important for estrogen-induced cell cycle progression by regulating the transcription of the E2F1 gene as well as other E2F1-responsive genes, including thymidine kinase 1, proliferating cell nuclear antigen, cyclin E, and cdc25A. The role of IKKalpha in regulating E2F1 was not the result of reduced levels of cyclin D1, as overexpression of this gene could not overcome the effects of IKKalpha knock-down. Furthermore, estrogen treatment increased the association of endogenous IKKalpha and E2F1, and this interaction occurred on promoters bound by E2F1. IKKalpha also potentiated the ability of p300/CBP-associated factor to acetylate E2F1. Taken together, these data suggest a novel mechanism by which IKKalpha can influence estrogen-mediated cell cycle progression through its regulation of E2F1.


Subject(s)
Cell Cycle/physiology , E2F1 Transcription Factor/biosynthesis , Estrogens/physiology , Gene Expression Regulation, Neoplastic/physiology , I-kappa B Kinase/physiology , Animals , Cell Cycle/genetics , Cell Line, Tumor , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/physiology , Humans , Mice , Promoter Regions, Genetic , Thymidine Kinase/genetics
7.
J Virol ; 79(10): 6532-9, 2005 May.
Article in English | MEDLINE | ID: mdl-15858038

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) selects a host cell tRNA as the primer for the initiation of reverse transcription. In a previous study, transport of the intact tRNA from the nucleus to the cytoplasm during tRNA biogenesis was shown to be a requirement for the selection of the tRNA primer by HIV-1. To further examine the importance of tRNA structure for transport and the selection of the primer, yeast tRNA(Phe) mutants were designed such that the native tRNA structure would be disrupted to various extents. The capacity of the mutant tRNA(Phe) to complement a defective HIV-1 provirus that relies on the expression of yeast tRNA(Phe) for infectivity was determined. We found a direct relationship between intact tRNA conformation and the capacity to be selected by HIV-1 for use in reverse transcription. tRNA(Phe) mutants that retained the capacity for nucleocytoplasmic transport, indicative of overall intact conformation, complemented the defective provirus. The mutant tRNAs were not aminoacylated, and the levels of complementation were lower than that for wild-type tRNA(Phe), which did undergo transport and aminoacylation. Taken together, these results demonstrate that HIV-1 primer selection is most dependent on a tRNA structure necessary for nucleocytoplasmic transport, consistent with primer selection occurring in the cytoplasm at or near the site of protein synthesis.


Subject(s)
HIV-1/physiology , RNA, Transfer/chemistry , Base Sequence , Biological Transport , Cell Line , Cell Nucleus/metabolism , Cytoplasm/metabolism , DNA Primers , Genetic Complementation Test , Humans , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Transfer/genetics , RNA, Transfer/metabolism , Selection, Genetic , Virus Replication
8.
AIDS Res Hum Retroviruses ; 20(4): 373-81, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15157356

ABSTRACT

The replication in human peripheral blood mononuclear cells (PBMC) of unique HIV-1 that select tRNA(His) or tRNA(Lys1,2) for reverse transcription was compared to the wild-type virus that uses tRNA(Lys,3). HIV-1 with only the primer-binding site (PBS) changed to be complementary to these alternative tRNAs initially replicated more slowly than the wild-type virus in PBMC, although all viruses eventually reached equivalent growth as measured by p24 antigen. Viruses with only a PBS complementary to the 3' terminal 18 nucleotides of tRNA(His) or tRNA(Lys1,2) reverted to use tRNA(Lys3). HIV-1 with mutations in the U5-PBS to allow selection of tRNA(His) and tRNA(Lys1,2) following long-term growth in SupT1 cells were also evaluated for growth and PBS stability following replication in PBMC. Although both viruses initially grew slower than wild type, they maintained a PBS complementary to the starting tRNA and did not revert to the wild-type PBS after long-term culture in PBMC. Analysis of the U5-PBS regions following long-term culture in PBMC also revealed few changes from the starting sequences. The virus that stably used tRNA(His) was less infectious than the wild type. In contrast, the virus that stably used tRNA(Lys1,2) evolved to be as infectious as wild-type virus following extended culture in PBMC. The results of these studies highlight the impact of the host cell on the tRNA primer selection process and subsequent infectivity of HIV-1.


Subject(s)
HIV Reverse Transcriptase/genetics , HIV-1/genetics , HIV-1/physiology , Leukocytes, Mononuclear/virology , RNA, Transfer, His/metabolism , RNA, Transfer, Lys/metabolism , Transcription, Genetic , Base Sequence , Cell Line , Cells, Cultured , HIV Core Protein p24/analysis , HIV Reverse Transcriptase/physiology , HIV-1/classification , HIV-1/pathogenicity , Humans , Mutation , Nucleic Acid Conformation , Proviruses/genetics , Virus Replication/genetics
9.
Virology ; 313(2): 354-63, 2003 Sep 01.
Article in English | MEDLINE | ID: mdl-12954204

ABSTRACT

All naturally occurring human immune deficiency viruses (HIV-1) select and use tRNA(Lys,3) as the primer for reverse transcription. Studies to elucidate the mechanism of tRNA selection from the intracellular milieu have been hampered due to the difficulties in manipulating the endogenous levels of tRNA(Lys,3). We have previously described a mutant HIV-1 with a primer binding site (PBS) complementary to yeast tRNA(Phe) (psHIV-Phe) that relies on transfection of yeast tRNA(Phe) for infectivity. To more accurately recapitulate the selection process, a cDNA was designed for the intracellular expression of the yeast tRNA(Phe). Increasing amounts of the plasmid encoding tRNA(Phe) resulted in a corresponding increase in levels of yeast tRNA(Phe) in the cell. The yeast tRNA(Phe) isolated from cells transfected with the cDNA for yeast tRNA(Phe), or in the cell lines expressing yeast tRNA(Phe), were aminoacylated, indicating that the expressed yeast tRNA(Phe) was incorporated into tRNA biogenesis pathways and translation. Increasing the cytoplasmic levels of tRNA(Phe) resulted in increased encapsidation of tRNA(Phe) in viruses with a PBS complementary to tRNA(Phe) (psHIV-Phe) or tRNA(Lys,3) (wild-type HIV-1). Production of infectious psHIV-Phe was dependent on the amount of cotransfected tRNA(Phe) cDNA. Increasing amounts of plasmids encoding yeast tRNA(Phe) produced an increase of infectious psHIV-Phe that plateaued at a level lower than that from the transfection of the wild-type genome, which uses tRNA(Lys,3) as the primer for reverse transcription. Cell lines were generated that expressed yeast tRNA(Phe) at levels approximately 0.1% of that for tRNA(Lys,3). Even with this reduced level of yeast tRNA(Phe), the cell lines complemented psHIV-Phe over background levels. The results of these studies demonstrate that intracellular levels of primer tRNA can have a direct effect on HIV-1 infectivity and further support the role for PBS-tRNA complementarity in the primer selection process.


Subject(s)
DNA Primers/genetics , HIV-1/genetics , RNA, Fungal/genetics , RNA, Transfer, Phe/genetics , RNA/genetics , Yeasts/genetics , Amino Acyl-tRNA Synthetases/metabolism , Base Sequence , Binding Sites , Cell Line , DNA Primers/metabolism , Genes, Fungal , HIV-1/physiology , HeLa Cells , Humans , Molecular Sequence Data , Plasmids , RNA/biosynthesis , RNA/metabolism , RNA, Fungal/biosynthesis , RNA, Fungal/metabolism , RNA, Transfer, Phe/biosynthesis , RNA, Transfer, Phe/metabolism , RNA-Directed DNA Polymerase/genetics , Transcription, Genetic , Transfection , Virus Replication , Yeasts/metabolism
10.
J Virol ; 77(16): 8695-701, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12885888

ABSTRACT

Initiation of retrovirus reverse transcription requires the selection of a tRNA primer from the intracellular milieu. To investigate the features of primer selection, a human immunodeficiency virus type 1 (HIV-1) and a murine leukemia virus (MuLV) were created that require yeast tRNA(Phe) to be supplied in trans for infectivity. Wild-type yeast tRNA(Phe) expressed in mammalian cells was transported to the cytoplasm and aminoacylated. In contrast, tRNA(Phe) without the D loop (tRNA(Phe)D(-)) was retained within the nucleus and did not complement infectivity of either HIV-1 or MuLV; however, infectivity was restored when tRNA(Phe)D(-) was directly transfected into the cytoplasm of cells. A tRNA(Phe) mutant (tRNA(Phe)UUA) that did not have the capacity to be aminoacylated was transported to the cytoplasm and did complement infectivity of both HIV-1 and MuLV, albeit at a level less than that with wild-type tRNA(Phe). Collectively, our results demonstrate that the tRNA primer captured by HIV-1 and MuLV occurs after nuclear export of tRNA and supports a model in which primer selection for retroviruses is coordinated with tRNA biogenesis at the intracellular site of protein synthesis.


Subject(s)
HIV/genetics , RNA, Transfer, Phe/biosynthesis , RNA , Transcription, Genetic , Base Sequence , Cell Line , Genetic Complementation Test , HIV/physiology , Humans , Mutation , Nucleic Acid Conformation , RNA, Transfer, Phe/chemistry , Saccharomyces cerevisiae/genetics , Virus Replication
11.
J Virol ; 77(16): 8756-64, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12885895

ABSTRACT

The initiation of human immunodeficiency virus type 1 (HIV-1) reverse transcription occurs at the primer binding site (PBS) that is complementary to the 3'-terminal nucleotides of tRNA(3)(Lys). Why all known strains of HIV-1 select tRNA(3)(Lys) for replication is unknown. Previous studies on the effect of altering the PBS of HIV-1 on replication identified an HIV-1 with a PBS complementary to tRNA(Glu). Since the virus was not initially designed to use tRNA(Glu), the virus had selected tRNA(Glu) from the intracellular pool of tRNA for use in replication. Further characterization of HIV-1 that uses tRNA(Glu) may provide new insights into the preference for tRNA(3)(Lys). HIV-1 constructed with the PBS complementary to tRNA(Glu) was more stable than HIV-1 with the PBS complementary to tRNA(Met) or tRNA(His); however, all of these viruses eventually reverted back to using tRNA(3)(Lys) following growth in SupT1 cells or peripheral blood mononuclear cells (PBMCs). New HIV-1 mutants with nucleotides in U5 complementary to the anticodon of tRNA(Glu) remained stable when grown in SupT1 cells or PBMCs, although the mutants grew more slowly than the wild-type virus. Sequence analysis of the U5 region and the PBS revealed additional mutations predicted to further promote tRNA-viral genome interaction. The results support the importance of the tRNA anticodon-genome interaction in the selection of the tRNA primer and highlight the fact that unique features of tRNA(3)(Lys) are exploited by HIV-1 for selection as the reverse transcription primer.


Subject(s)
Anticodon , Genome, Viral , HIV-1/genetics , RNA Probes , RNA, Transfer/genetics , RNA, Viral/genetics , Base Sequence , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Viral/chemistry , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...