Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 2937, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38316967

ABSTRACT

A tubular bone bead dating to ~ 12,940 BP was recovered from a hearth-centered activity area at the La Prele Mammoth site in Converse County, Wyoming, USA. This is the oldest known bead from the Western Hemisphere. To determine the taxonomic origin of the bead, we extracted collagen for zooarchaeology by mass spectrometry (ZooMS). We also used micro-CT scanning for morphological analysis to determine likely skeletal elements used for its production. We conclude that the bead was made from a metapodial or proximal phalanx of a hare (Lepus sp.). This find represents the first secure evidence for the use of hares during the Clovis period. While the use of hare bone for the manufacture of beads was a common practice in western North America during the Holocene, its origins can now be traced back to at least the terminal Pleistocene.


Subject(s)
Hares , Lagomorpha , Animals , Phylogeny , Mass Spectrometry , North America
2.
PLoS One ; 17(4): e0264092, 2022.
Article in English | MEDLINE | ID: mdl-35442993

ABSTRACT

By 13,000 BP human populations were present across North America, but the exact date of arrival to the continent, especially areas south of the continental ice sheets, remains unclear. Here we examine patterns in the stratigraphic integrity of early North American sites to gain insight into the timing of first colonization. We begin by modeling stratigraphic mixing of multicomponent archaeological sites to identify signatures of stratigraphic integrity in vertical artifact distributions. From those simulations, we develop a statistic we call the Apparent Stratigraphic Integrity Index (ASI), which we apply to pre- and post-13,000 BP archaeological sites north and south of the continental ice sheets. We find that multiple early Beringian sites dating between 13,000 and 14,200 BP show excellent stratigraphic integrity. Clear signs of discrete and minimally disturbed archaeological components do not appear south of the ice sheets until the Clovis period. These results provide support for a relatively late date of human arrival to the Americas.


Subject(s)
Archaeology , Indians, North American , Americas , Humans , Ice Cover , North America
3.
Sci Data ; 9(1): 27, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35087092

ABSTRACT

Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies.

4.
Philos Trans R Soc Lond B Biol Sci ; 376(1816): 20190718, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33250020

ABSTRACT

The northern American Southwest provides one of the most well-documented cases of human population growth and decline in the world. The geographic extent of this decline in North America is unknown owing to the lack of high-resolution palaeodemographic data from regions across and beyond the greater Southwest, where archaeological radiocarbon data are often the only available proxy for investigating these palaeodemographic processes. Radiocarbon time series across and beyond the greater Southwest suggest widespread population collapses from AD 1300 to 1600. However, radiocarbon data have potential biases caused by variable radiocarbon sample preservation, sample collection and the nonlinearity of the radiocarbon calibration curve. In order to be confident in the wider trends seen in radiocarbon time series across and beyond the greater Southwest, here we focus on regions that have multiple palaeodemographic proxies and compare those proxies to radiocarbon time series. We develop a new method for time series analysis and comparison between dendrochronological data and radiocarbon data. Results confirm a multiple proxy decline in human populations across the Upland US Southwest, Central Mesa Verde and Northern Rio Grande from AD 1300 to 1600. These results lend confidence to single proxy radiocarbon-based reconstructions of palaeodemography outside the Southwest that suggest post-AD 1300 population declines in many parts of North America. This article is part of the theme issue 'Cross-disciplinary approaches to prehistoric demography'.


Subject(s)
Archaeology , Demography , Population Dynamics , History, Ancient , History, Medieval , Humans , Radiometric Dating , Southwestern United States
5.
Proc Natl Acad Sci U S A ; 115(40): 9962-9967, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30224487

ABSTRACT

We conduct a global comparison of the consumption of energy by human populations throughout the Holocene and statistically quantify coincident changes in the consumption of energy over space and time-an ecological phenomenon known as synchrony. When populations synchronize, adverse changes in ecosystems and social systems may cascade from society to society. Thus, to develop policies that favor the sustained use of resources, we must understand the processes that cause the synchrony of human populations. To date, it is not clear whether human societies display long-term synchrony or, if they do, the potential causes. Our analysis begins to fill this knowledge gap by quantifying the long-term synchrony of human societies, and we hypothesize that the synchrony of human populations results from (i) the creation of social ties that couple populations over smaller scales and (ii) much larger scale, globally convergent trajectories of cultural evolution toward more energy-consuming political economies with higher carrying capacities. Our results suggest that the process of globalization is a natural consequence of evolutionary trajectories that increase the carrying capacities of human societies.


Subject(s)
Archaeology , Ecosystem , Fossil Fuels , Social Change , History, Ancient , Humans , Socioeconomic Factors , Sociology
6.
Sci Adv ; 4(8): eaat5473, 2018 08.
Article in English | MEDLINE | ID: mdl-30101195

ABSTRACT

Some recent academic and popular literature implies that the problem of the colonization of the Americas has been largely resolved in favor of one specific model: a Pacific coastal migration, dependent on high marine productivity, from the Bering Strait to South America, thousands of years before Clovis, the earliest widespread cultural manifestation south of the glacial ice. Speculations on maritime adaptations and typological links (stemmed points) across thousands of kilometers have also been advanced. A review of the current genetic, archeological, and paleoecological evidence indicates that ancestral Native American population expansion occurred after 16,000 years ago, consistent with the archeological record, particularly with the earliest securely dated sites after ~15,000 years ago. These data are largely consistent with either an inland (ice-free corridor) or Pacific coastal routes (or both), but neither can be rejected at present. Systematic archeological and paleoecological investigations, informed by geomorphology, are required to test each hypothesis.


Subject(s)
Biological Evolution , Emigration and Immigration/history , Models, Theoretical , Americas , History, Ancient , Humans , Population Dynamics
7.
Proc Natl Acad Sci U S A ; 113(4): 931-5, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26699457

ABSTRACT

The human population has grown significantly since the onset of the Holocene about 12,000 y ago. Despite decades of research, the factors determining prehistoric population growth remain uncertain. Here, we examine measurements of the rate of growth of the prehistoric human population based on statistical analysis of the radiocarbon record. We find that, during most of the Holocene, human populations worldwide grew at a long-term annual rate of 0.04%. Statistical analysis of the radiocarbon record shows that transitioning farming societies experienced the same rate of growth as contemporaneous foraging societies. The same rate of growth measured for populations dwelling in a range of environments and practicing a variety of subsistence strategies suggests that the global climate and/or endogenous biological factors, not adaptability to local environment or subsistence practices, regulated the long-term growth of the human population during most of the Holocene. Our results demonstrate that statistical analyses of large ensembles of radiocarbon dates are robust and valuable for quantitatively investigating the demography of prehistoric human populations worldwide.


Subject(s)
Agriculture , Population Growth , Radiometric Dating , Archaeology , Humans
9.
Proc Natl Acad Sci U S A ; 110(2): 443-7, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23267083

ABSTRACT

Ancient cultural changes have often been linked to abrupt climatic events, but the potential that climate can exert a persistent influence on human populations has been debated. Here, independent population, temperature, and moisture history reconstructions from the Bighorn Basin in Wyoming (United States) show a clear quantitative relationship spanning 13 ka, which explains five major periods of population growth/decline and ~45% of the population variance. A persistent ~300-y lag in the human demographic response conforms with either slow (~0.3%) intrinsic annual population growth rates or a lag in the environmental carrying capacity, but in either case, the population continuously adjusted to changing environmental conditions.


Subject(s)
Climate , Environment , Population Dynamics , Anthropology , Carbon Radioisotopes/analysis , Demography , History, Ancient , Humans , Hydrology , Models, Theoretical , Rain , Temperature , Wyoming
10.
Science ; 332(6032): 928, 2011 May 20.
Article in English | MEDLINE | ID: mdl-21596984
SELECTION OF CITATIONS
SEARCH DETAIL
...