Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 3305, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35676281

ABSTRACT

Identifying the circuits responsible for cognition and understanding their embedded computations is a challenge for neuroscience. We establish here a hierarchical cross-scale approach, from behavioral modeling and fMRI in task-performing mice to cellular recordings, in order to disentangle local network contributions to olfactory reinforcement learning. At mesoscale, fMRI identifies a functional olfactory-striatal network interacting dynamically with higher-order cortices. While primary olfactory cortices respectively contribute only some value components, the downstream olfactory tubercle of the ventral striatum expresses comprehensively reward prediction, its dynamic updating, and prediction error components. In the tubercle, recordings reveal two underlying neuronal populations with non-redundant reward prediction coding schemes. One population collectively produces stabilized predictions as distributed activity across neurons; in the other, neurons encode value individually and dynamically integrate the recent history of uncertain outcomes. These findings validate a cross-scale approach to mechanistic investigations of higher cognitive functions in rodents.


Subject(s)
Reinforcement, Psychology , Ventral Striatum , Animals , Cerebral Cortex , Magnetic Resonance Imaging , Mice , Olfactory Tubercle , Reward , Ventral Striatum/diagnostic imaging
2.
J Neurochem ; 160(4): 454-468, 2022 02.
Article in English | MEDLINE | ID: mdl-34919270

ABSTRACT

There is increasing evidence for a daily rhythm of µ-opioid receptor (MOR) efficacy and the development of alcohol dependence. Previous studies show that ß-arrestin 2 (bArr2) has an impact on alcohol intake, at least partially mediated via modulation of MOR signaling, which in turn mediates the alcohol rewarding effects. Considering the interplay of circadian rhythms on MOR and alcohol dependence, we aimed to investigate bArr2 in alcohol dependence at different time points of the day/light cycle on the level of bArr2 mRNA (in situ hybridization), MOR availability (receptor autoradiography), and MOR signaling (Damgo-stimulated G-protein coupling) in the nucleus accumbens of alcohol-dependent and non-dependent Wistar rats. Using a microarray data set we found that bArr2, but not bArr1, shows a diurnal transcription pattern in the accumbens of naïve rats with higher expression levels during the active cycle. In 3-week abstinent rats, bArr2 is up-regulated in the accumbens at the beginning of the active cycle (ZT15), whereas no differences were found at the beginning of the inactive cycle (ZT3) compared with controls. This effect was accompanied by a specific down-regulation of MOR binding in the active cycle. Additionally, we detect a higher receptor coupling during the inactive cycle compared with the active cycle in alcohol-dependent animals. Together, we report daily rhythmicity for bArr2 expression linked to an inverse pattern of MOR, suggesting an involvement for bArr2 on circadian regulation of G-protein coupled receptors in alcohol dependence. The presented data may have implications for the development of novel bArr2-related treatment targets for alcoholism.


Subject(s)
Alcoholism/genetics , Circadian Rhythm/genetics , Receptors, Opioid, mu/drug effects , Receptors, Opioid, mu/genetics , beta-Arrestin 2/genetics , Alcoholism/drug therapy , Animals , Down-Regulation , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Male , Microarray Analysis , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Rats , Rats, Wistar , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Reward
4.
Mol Psychiatry ; 26(11): 6482-6504, 2021 11.
Article in English | MEDLINE | ID: mdl-34021263

ABSTRACT

Mutations in SHANK genes play an undisputed role in neuropsychiatric disorders. Until now, research has focused on the postsynaptic function of SHANKs, and prominent postsynaptic alterations in glutamatergic signal transmission have been reported in Shank KO mouse models. Recent studies have also suggested a possible presynaptic function of SHANK proteins, but these remain poorly defined. In this study, we examined how SHANK2 can mediate electrophysiological, molecular, and behavioral effects by conditionally overexpressing either wild-type SHANK2A or the extrasynaptic SHANK2A(R462X) variant. SHANK2A overexpression affected pre- and postsynaptic targets and revealed a reversible, development-dependent autism spectrum disorder-like behavior. SHANK2A also mediated redistribution of Ca2+-permeable AMPA receptors between apical and basal hippocampal CA1 dendrites, leading to impaired synaptic plasticity in the basal dendrites. Moreover, SHANK2A overexpression reduced social interaction and increased the excitatory noise in the olfactory cortex during odor processing. In contrast, overexpression of the extrasynaptic SHANK2A(R462X) variant did not impair hippocampal synaptic plasticity, but still altered the expression of presynaptic/axonal signaling proteins. We also observed an attention-deficit/hyperactivity-like behavior and improved social interaction along with enhanced signal-to-noise ratio in cortical odor processing. Our results suggest that the disruption of pre- and postsynaptic SHANK2 functions caused by SHANK2 mutations has a strong impact on social behavior. These findings indicate that pre- and postsynaptic SHANK2 actions cooperate for normal neuronal function, and that an imbalance between these functions may lead to different neuropsychiatric disorders.


Subject(s)
Autism Spectrum Disorder , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Hippocampus/metabolism , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Receptors, AMPA/metabolism , Social Behavior
5.
Cell Tissue Res ; 383(1): 581-595, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33515293

ABSTRACT

Olfaction supports a multitude of behaviors vital for social communication and interactions between conspecifics. Intact sensory processing is contingent upon proper circuit wiring. Disturbances in genetic factors controlling circuit assembly and synaptic wiring can lead to neurodevelopmental disorders, such as autism spectrum disorder (ASD), where impaired social interactions and communication are core symptoms. The variability in behavioral phenotype expression is also contingent upon the role environmental factors play in defining genetic expression. Considering the prevailing clinical diagnosis of ASD, research on therapeutic targets for autism is essential. Behavioral impairments may be identified along a range of increasingly complex social tasks. Hence, the assessment of social behavior and communication is progressing towards more ethologically relevant tasks. Garnering a more accurate understanding of social processing deficits in the sensory domain may greatly contribute to the development of therapeutic targets. With that framework, studies have found a viable link between social behaviors, circuit wiring, and altered neuronal coding related to the processing of salient social stimuli. Here, the relationship between social odor processing in rodents and humans is examined in the context of health and ASD, with special consideration for how genetic expression and neuronal connectivity may regulate behavioral phenotypes.


Subject(s)
Autistic Disorder/genetics , Receptors, Odorant/physiology , Animals , Humans , Mice , Neurons
6.
Nat Commun ; 11(1): 3460, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32651365

ABSTRACT

The learning of stimulus-outcome associations allows for predictions about the environment. Ventral striatum and dopaminergic midbrain neurons form a larger network for generating reward prediction signals from sensory cues. Yet, the network plasticity mechanisms to generate predictive signals in these distributed circuits have not been entirely clarified. Also, direct evidence of the underlying interregional assembly formation and information transfer is still missing. Here we show that phasic dopamine is sufficient to reinforce the distinctness of stimulus representations in the ventral striatum even in the absence of reward. Upon such reinforcement, striatal stimulus encoding gives rise to interregional assemblies that drive dopaminergic neurons during stimulus-outcome learning. These assemblies dynamically encode the predicted reward value of conditioned stimuli. Together, our data reveal that ventral striatal and midbrain reward networks form a reinforcing loop to generate reward prediction coding.


Subject(s)
Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Olfactory Tubercle/drug effects , Animals , Dopamine/pharmacology , Male , Mesencephalon/cytology , Mice , Models, Theoretical , Ventral Striatum/drug effects , Ventral Striatum/metabolism
7.
eNeuro ; 6(4)2019.
Article in English | MEDLINE | ID: mdl-31399493

ABSTRACT

Social recognition in mammals depends on complex interactions between sensory and other brain areas as well as modulatory inputs by specific neuropeptides such as oxytocin (OXT). Social recognition memory specifically has been shown to depend among others on olfactory processing, and can be probed using methods similar to those used when probing non-social odor memory. We here use a computational model of two interconnected olfactory networks in the mouse, the olfactory bulb (OB) and anterior olfactory nucleus, to propose a mechanism for olfactory short-term recognition memory and its modulation in social situations. Based on previous experiments, we propose one early locus for memory to be the OB. During social encounters in mice, pyramidal cells in the anterior olfactory nucleus, themselves driven by olfactory input, are rendered more excitable by OXT release, resulting in stronger feedback to OB local interneurons. This additional input to the OB creates stronger dynamics and improves signal-to-noise ratio of odor responses in the OB proper. As a consequence, mouse social olfactory memories are more strongly encoded and their duration is modulated.


Subject(s)
Models, Neurological , Neurons/physiology , Olfactory Bulb/physiology , Olfactory Cortex/physiology , Oxytocin/physiology , Recognition, Psychology/physiology , Animals , Female , Male , Mice, Inbred C57BL , Neural Networks, Computer , Neural Pathways/physiology , Social Behavior
8.
Transl Psychiatry ; 8(1): 68, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29581421

ABSTRACT

Hyperconnectivity of the default-mode network (DMN) is one of the most widely replicated neuroimaging findings in major depressive disorder (MDD). Further, there is growing evidence for a central role of the lateral habenula (LHb) in the pathophysiology of MDD. There is preliminary neuroimaging evidence linking LHb and the DMN, but no causal relationship has been shown to date. We combined optogenetics and functional magnetic resonance imaging (fMRI), to establish a causal relationship, using an animal model of treatment-resistant depression, namely Negative Cognitive State rats. First, an inhibitory light-sensitive ion channel was introduced into the LHb by viral transduction. Subsequently, laser stimulation was performed during fMRI acquisition on a 9.4 Tesla animal scanner. Neural activity and connectivity were assessed, before, during and after laser stimulation. We observed a connectivity decrease in the DMN following laser-induced LHb perturbation. Our data indicate a causal link between LHb downregulation and reduction in DMN connectivity. These findings may advance our mechanistic understanding of LHb inhibition, which had previously been identified as a promising therapeutic principle, especially for treatment-resistant depression.


Subject(s)
Brain/physiopathology , Depressive Disorder, Treatment-Resistant/physiopathology , Habenula/physiopathology , Animals , Brain Mapping , Disease Models, Animal , Magnetic Resonance Imaging , Male , Neural Pathways/physiopathology , Optogenetics , Rats
9.
Curr Top Behav Neurosci ; 35: 55-75, 2018.
Article in English | MEDLINE | ID: mdl-28812265

ABSTRACT

Social signals are identified through processing in sensory systems to trigger appropriate behavioral responses. Social signals are received primarily in most mammals through the olfactory system. Individuals are recognized based on their unique blend of odorants. Such individual recognition is critical to distinguish familiar conspecifics from intruders and to recognize offspring. Social signals can also trigger stereotyped responses like mating behaviors. Specific sensory pathways for individual recognition and eliciting stereotyped responses have been identified both in the early olfactory system and its connected cortices. Oxytocin is emerging as a major state modulator of sensory processing with distinct functions in early and higher olfactory brain regions. The brain state induced through Oxytocin influences social perception. Oxytocin acting on different brain regions can promote either exploration and recognition towards same- or other-sex conspecifics, or association learning. Region-specific deletion of Oxytocin receptors suffices to disrupt these behaviors. Together, these recent insights highlight that Oxytocin's function in social behaviors cannot be understood without considering its actions on sensory processing.


Subject(s)
Olfactory Bulb/metabolism , Olfactory Perception/physiology , Oxytocin/metabolism , Receptors, Oxytocin/metabolism , Smell/physiology , Social Behavior , Animals , Brain/metabolism , Signal Transduction/physiology
10.
Cell Mol Life Sci ; 74(5): 849-867, 2017 03.
Article in English | MEDLINE | ID: mdl-27695873

ABSTRACT

The mammalian olfactory bulb is a forebrain structure just one synapse downstream from the olfactory sensory neurons and performs the complex computations of sensory inputs. The formation of this sensory circuit is shaped through activity-dependent and cell-intrinsic mechanisms. Recent studies have revealed that cell-type specific connectivity and the organization of synapses in dendritic compartments are determined through cell-intrinsic programs already preset in progenitor cells. These progenitor programs give rise to subpopulations within a neuron type that have distinct synaptic organizations. The intrinsically determined formation of distinct synaptic organizations requires factors from contacting cells that match the cell-intrinsic programs. While certain genes control wiring within the newly generated neurons, other regulatory genes provide intercellular signals and are only expressed in neurons that will form contacts with the newly generated cells. Here, the olfactory system has provided a useful model circuit to reveal the factors regulating assembly of the highly structured connectivity in mammals.


Subject(s)
Mammals/physiology , Nerve Net/physiology , Neurogenesis , Neurons/physiology , Olfactory Bulb/physiology , Animals , Humans , Transcription, Genetic
11.
Neuron ; 90(3): 609-21, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27112498

ABSTRACT

Oxytocin promotes social interactions and recognition of conspecifics that rely on olfaction in most species. The circuit mechanisms through which oxytocin modifies olfactory processing are incompletely understood. Here, we observed that optogenetically induced oxytocin release enhanced olfactory exploration and same-sex recognition of adult rats. Consistent with oxytocin's function in the anterior olfactory cortex, particularly in social cue processing, region-selective receptor deletion impaired social recognition but left odor discrimination and recognition intact outside a social context. Oxytocin transiently increased the drive of the anterior olfactory cortex projecting to olfactory bulb interneurons. Cortical top-down recruitment of interneurons dynamically enhanced the inhibitory input to olfactory bulb projection neurons and increased the signal-to-noise of their output. In summary, oxytocin generates states for optimized information extraction in an early cortical top-down network that is required for social interactions with potential implications for sensory processing deficits in autism spectrum disorders.


Subject(s)
Behavior, Animal/physiology , Nerve Net/physiology , Olfactory Bulb/physiology , Oxytocin/metabolism , Smell/physiology , Social Behavior , Animals , Interneurons/physiology , Mice, Transgenic , Rats, Wistar
12.
J Cereb Blood Flow Metab ; 36(3): 629-38, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26661158

ABSTRACT

The combination of optogenetics with functional magnetic resonance imaging is a promising tool to study the causal relationship between specific neuronal populations and global brain activity. We employed this technique to study the brain response to recruitment of glutamatergic neurons in the mouse hippocampus. The light-sensitive protein channelrhodopsin-2 was expressed in α-CamKII-positive glutamatergic neurons in the left hippocampus (N = 10). Functional magnetic resonance imaging was performed during local laser stimulation, with stimulus duration of 1 second. The hemodynamic response to these stimuli was analyzed on a whole-brain level. In a secondary analysis, we examined the impact of the stimulation locus on the dorso-ventral axis within the hippocampal formation. The hemodynamic response in the mouse hippocampus had an earlier peak and a shorter duration compared to those observed in humans. Photostimulation was associated with significantly increased blood oxygen level-dependent signal in group statistics: bilaterally in the hippocampus, frontal lobe and septum, ipsilaterally in the nucleus accumbens and contralaterally in the striatum. More dorsal position of the laser fiber was associated with a stronger activation in projection regions (insular cortex and striatum). The characterization of brain-region-specific hemodynamic response functions may enable more precise interpretation of future functional magnetic resonance imaging experiments.


Subject(s)
Glutamic Acid/metabolism , Hemodynamics , Hippocampus/blood supply , Hippocampus/physiology , Magnetic Resonance Imaging/methods , Optogenetics/methods , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Channelrhodopsins , Gene Expression , Hippocampus/cytology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/cytology , Neurons/metabolism
13.
J Neurosci ; 35(27): 9946-56, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26156995

ABSTRACT

Animals are facing a complex sensory world in which only few stimuli are relevant to guide behavior. Value has to be assigned to relevant stimuli such as odors to select them over concurring information. Phasic dopamine is involved in the value assignment to stimuli in the ventral striatum. The underlying cellular mechanisms are incompletely understood. In striatal projection neurons of the ventral striatum in adult mice, we therefore examined the features and dynamics of phasic dopamine-induced synaptic plasticity and how this plasticity may modify the striatal output. Phasic dopamine is predicted to tag inputs that occur in temporal proximity. Indeed, we observed D1 receptor-dependent synaptic potentiation only when odor-like bursts and optogenetically evoked phasic dopamine release were paired within a time window of <1 s. Compatible with predictions of dynamic value assignment, the synaptic potentiation persisted after the phasic dopamine signal had ceased, but gradually reversed when odor-like bursts continued to be presented. The synaptic plasticity depended on the sensory input rate and was input specific. Importantly, synaptic plasticity amplified the firing response to a given olfactory input as the dendritic integration and the firing threshold remained unchanged during synaptic potentiation. Thus, phasic dopamine-induced synaptic plasticity can change information transfer through dynamic increases of the output of striatal projection neurons to specific sensory inputs. This plasticity may provide a neural substrate for dynamic value assignment in the striatum.


Subject(s)
Corpus Striatum/cytology , Dopamine Agents/pharmacology , Dopamine/pharmacology , Neuronal Plasticity/drug effects , Neurons/drug effects , Sensation/drug effects , Action Potentials/drug effects , Action Potentials/genetics , Afferent Pathways/drug effects , Animals , Channelrhodopsins , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/genetics , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Lasers , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neuronal Plasticity/genetics , Neurons/physiology , Odorants , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Sensation/genetics , Time Factors
14.
Front Cell Neurosci ; 9: 116, 2015.
Article in English | MEDLINE | ID: mdl-25914618

ABSTRACT

Pauses in the tonic firing of striatal cholinergic interneurons (CINs) emerge during reward-related learning in response to conditioning of a neutral cue. We have previously reported that augmenting the postsynaptic response to cortical afferents in CINs is coupled to the emergence of a cell-intrinsic afterhyperpolarization (AHP) underlying pauses in tonic activity. Here we investigated in a bihemispheric rat-brain slice preparation the mechanisms of synaptic plasticity of excitatory afferents to CINs and the association with changes in the AHP. We found that high frequency stimulation (HFS) of commissural corticostriatal afferents from the contralateral hemisphere induced a robust long-term depression (LTD) of postsynaptic potentials (PSP) in CINs. Depression of the PSP of smaller magnitude and duration was observed in response to HFS of the ipsilateral white matter or cerebral cortex. In Mg(2+)-free solution HFS induced NMDA receptor-dependent potentiation of the PSP, evident in both the maximal slope and amplitude of the PSP. The increase in maximal slope corroborates previous findings, and was blocked by antagonism of either D1-like dopamine receptors with SCH23390 or D2-like dopamine receptors with sulpiride during HFS in Mg(2+)-free solution. Potentiation of the slower PSP amplitude component was due to augmentation of the NMDA receptor-mediated potential as this was completely reversed on subsequent application of the NMDA receptor antagonist AP5. HFS similarly potentiated NMDA receptor currents isolated by blockade of AMPA/kainate receptors with CNQX. The plasticity-induced increase in the slow PSP component was directly associated with an increase in the subsequent AHP. Thus plasticity of cortical afferent synapses is ideally suited to influence the cue-induced firing dynamics of CINs, particularly through potentiation of NMDA receptor-mediated synaptic transmission.

15.
Development ; 142(2): 303-13, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25519243

ABSTRACT

New granule cell neurons (GCs) generated in the neonatal and adult subventricular zone (SVZ) have distinct patterns of input synapses in their dendritic domains. These synaptic input patterns determine the computations that the neurons eventually perform in the olfactory bulb. We observed that GCs generated earlier in postnatal life had acquired an 'adult' synaptic development only in one dendritic domain, and only later-born GCs showed an 'adult' synaptic development in both dendritic domains. It is unknown to what extent the distinct synaptic input patterns are already determined in SVZ progenitors and/or by the brain circuit into which neurons integrate. To distinguish these possibilities, we heterochronically transplanted retrovirally labeled SVZ progenitor cells. Once these transplanted progenitors, which mainly expressed Mash1, had differentiated into GCs, their glutamatergic input synapses were visualized by genetic tags. We observed that GCs derived from neonatal progenitors differentiating in the adult maintained their characteristic neonatal synapse densities. Grafting of adult SVZ progenitors to the neonate had a different outcome. These GCs formed synaptic densities that corresponded to neither adult nor neonatal patterns in two dendritic domains. In summary, progenitors in the neonatal and adult brain generate distinct GC populations and switch their fate to generate neurons with specific synaptic input patterns. Once they switch, adult progenitors require specific properties of the circuit to maintain their characteristic synaptic input patterns. Such determination of synaptic input patterns already at the progenitor-cell level may be exploited for brain repair to engineer neurons with defined wiring patterns.


Subject(s)
Cell Differentiation/physiology , Cell Lineage/physiology , Lateral Ventricles/cytology , Neural Stem Cells/physiology , Synapses/physiology , Analysis of Variance , Animals , Animals, Genetically Modified , Basic Helix-Loop-Helix Transcription Factors/metabolism , Female , Image Processing, Computer-Assisted , Immunohistochemistry , Rats , Rats, Sprague-Dawley , Stem Cell Transplantation
16.
J Neurosci ; 34(48): 16022-30, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25429143

ABSTRACT

In postnatal development, GluN2B-containing NMDARs are critical for the functional maturation of glutamatergic synapses. GluN2B-containing NMDARs prevail until the second postnatal week when GluN2A subunits are progressively added, conferring mature properties to NMDARs. In cortical principal neurons, deletion of GluN2B results in an increase in functional AMPAR synapses, suggesting that GluN2B-containing NMDARs set a brake on glutamate synapse maturation. The function of GluN2B in the maturation of glutamatergic inputs to cortical interneurons is not known. To examine the function of GluN2B in interneurons, we generated mutant mice with conditional deletion of GluN2B in interneurons (GluN2B(ΔGAD67)). In GluN2B(ΔGAD67) mice interneurons distributed normally in cortical brain regions. After the second postnatal week, GluN2B(ΔGAD67) mice developed hippocampal seizures and died shortly thereafter. Before the onset of seizures, GluN2B-deficient hippocampal interneurons received fewer glutamatergic synaptic inputs than littermate controls, indicating that GluN2B-containing NMDARs positively regulate the maturation of glutamatergic input synapses in interneurons. These findings suggest that GluN2B-containing NMDARs keep the circuit activity under control by promoting the maturation of excitatory synapses in interneurons.


Subject(s)
Glutamic Acid/metabolism , Hippocampus/growth & development , Hippocampus/metabolism , Interneurons/metabolism , Receptors, N-Methyl-D-Aspartate/deficiency , Synapses/metabolism , Animals , Animals, Newborn , Female , Gene Knock-In Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Culture Techniques , Receptors, N-Methyl-D-Aspartate/physiology
17.
J Neurosci ; 34(35): 11549-59, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-25164653

ABSTRACT

Phasic increases in dopamine (DA) are involved in the detection and selection of relevant sensory stimuli. The DAergic and cholinergic system dynamically interact to gate and potentiate sensory inputs to striatum. Striatal cholinergic interneurons (CINs) respond to relevant sensory stimuli with an initial burst, a firing pause, or a late burst, or a combination of these three components. CIN responses coincide with phasic firing of DAergic neurons in vivo. In particular, the late burst of CINs codes for the anticipated reward. To examine whether DAergic midbrain afferents can evoke the different CIN responses, we recorded from adult olfactory tubercle slices in the mouse ventral striatum. Olfactory inputs to striatal projection neurons were gated by the cholinergic tone. Phasic optogenetic activation of DAergic terminals evoked combinations of initial bursts, pauses, and late bursts in subsets of CINs by distinct receptor pathways. Glutamate release from midbrain afferents evoked an NMDAR-dependent initial burst followed by an afterhyperpolarization-induced pause. Phasic release of DA itself evoked acute changes in CIN firing. In particular, in CINs without an initial burst, phasic DA release evoked a pause through D2-type DA receptor activation. Independently, phasic DA activated a slow depolarizing conductance and the late burst through a D1-type DA receptor pathway. In summary, DAergic neurons elicit transient subsecond firing responses in CINs by sequential activation of NMDA, D2-type, and D1-type receptors. This fast control of striatal cholinergic tone by phasic DA provides a novel dynamic link of two transmitter systems central to the detection and selection of relevant stimuli.


Subject(s)
Cholinergic Neurons/physiology , Dopaminergic Neurons/physiology , Interneurons/physiology , Receptors, Dopamine D1/physiology , Receptors, Dopamine D2/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Animals , Basal Ganglia/physiology , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organ Culture Techniques , Patch-Clamp Techniques
19.
Cell Tissue Res ; 354(1): 61-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23695972

ABSTRACT

Optogenetics is the optical control of neuronal excitability by genetically delivered light-activated channels and pumps and represents a promising tool to fuel the study of circuit function in psychiatric animal models. This review highlights three developments. First, we examine the application of optogenetics in one of the neuromodulators central to the pathophysiology of many psychiatric disorders, the dopaminergic system. We then discuss recent work in translating functional magnetic resonance imaging in small animals (in which optogenetics can be employed to reveal physiological mechanisms underlying disease-related alterations in brain circuits) to patients. Finally, we describe emerging technological developments for circuit manipulation in freely behaving animals.


Subject(s)
Disease Models, Animal , Mental Disorders/genetics , Mental Disorders/physiopathology , Optogenetics/methods , Animals , Humans
20.
Cell Mol Life Sci ; 70(19): 3591-601, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23397131

ABSTRACT

It is now widely accepted that neurogenesis continues throughout life. Accumulating evidence suggests that neurotransmitters are essential signaling molecules that control the different steps of neurogenesis. Nevertheless, we are only beginning to understand the precise role of neurotransmitter receptors and in particular excitatory glutamatergic transmission in the differentiation of adult-born neurons. Recent technical advances allow single-cell gene deletion to study cell-autonomous effects during the maturation of adult-born neurons. Single-cell gene deletion overcomes some of the difficulties in interpreting global gene deletion effects on entire brain areas or systemic pharmacological approaches that might result in compensatory circuit effects. The aim of this review is to summarize recent advances in the understanding of the role of NMDA receptors (NMDARs) during the differentiation of adult-born neurons and put them in perspective with previous findings on cortical development.


Subject(s)
Brain/cytology , Brain/physiology , Neurogenesis/physiology , Neurons/cytology , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Cell Differentiation/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...