Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Cell Fact ; 16(1): 131, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28750668

ABSTRACT

BACKGROUND: The ideal protein expression system should provide recombinant proteins in high quality and quantity involving low production costs only. However, especially for complex therapeutic proteins like monoclonal antibodies many challenges remain to meet this goal and up to now production of monoclonal antibodies is very costly and delicate. Particularly, emerging disease outbreaks like Ebola virus in Western Africa in 2014-2016 make it necessary to reevaluate existing production platforms and develop robust and cheap alternatives that are easy to handle. RESULTS: In this study, we engineered the microalga Phaeodactylum tricornutum to produce monoclonal IgG antibodies against the nucleoprotein of Marburg virus, a close relative of Ebola virus causing severe hemorrhagic fever with high fatality rates in humans. Sequences for both chains of a mouse IgG antibody were retrieved from a murine hybridoma cell line and implemented in the microalgal system. Fully assembled antibodies were shown to be secreted by the alga and antibodies were proven to be functional in western blot, ELISA as well as IFA studies just like the original hybridoma produced IgG. Furthermore, synthetic variants with constant regions of a rabbit IgG and human IgG with optimized codon usage were produced and characterized. CONCLUSIONS: This study highlights the potential of microalgae as robust and low cost expression platform for monoclonal antibodies secreting IgG antibodies directly into the culture medium. Microalgae possess rapid growth rates, need basically only water, air and sunlight for cultivation and are very easy to handle.


Subject(s)
Antibodies, Monoclonal/metabolism , Diatoms/metabolism , Marburgvirus/genetics , Ribonucleoproteins/immunology , Viral Proteins/immunology , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Cell Line , Enzyme-Linked Immunosorbent Assay , Humans , Hybridomas/cytology , Hybridomas/metabolism , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/metabolism , Mice , Microalgae/metabolism , Microscopy, Fluorescence , Nucleocapsid Proteins , Rabbits , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/immunology
2.
J Infect Dis ; 214(suppl 3): S250-S257, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27638946

ABSTRACT

BACKGROUND: A unit of the European Mobile Laboratory (EMLab) consortium was deployed to the Ebola virus disease (EVD) treatment unit in Guéckédou, Guinea, from March 2014 through March 2015. METHODS: The unit diagnosed EVD and malaria, using the RealStar Filovirus Screen reverse transcription-polymerase chain reaction (RT-PCR) kit and a malaria rapid diagnostic test, respectively. RESULTS: The cleaned EMLab database comprised 4719 samples from 2741 cases of suspected EVD from Guinea. EVD was diagnosed in 1231 of 2178 hospitalized patients (57%) and in 281 of 563 who died in the community (50%). Children aged <15 years had the highest proportion of Ebola virus-malaria parasite coinfections. The case-fatality ratio was high in patients aged <5 years (80%) and those aged >74 years (90%) and low in patients aged 10-19 years (40%). On admission, RT-PCR analysis of blood specimens from patients who died in the hospital yielded a lower median cycle threshold (Ct) than analysis of blood specimens from survivors (18.1 vs 23.2). Individuals who died in the community had a median Ct of 21.5 for throat swabs. Multivariate logistic regression on 1047 data sets revealed that low Ct values, ages of <5 and ≥45 years, and, among children aged 5-14 years, malaria parasite coinfection were independent determinants of a poor EVD outcome. CONCLUSIONS: Virus load, age, and malaria parasite coinfection play a role in the outcome of EVD.


Subject(s)
Ebolavirus/isolation & purification , Epidemics , Filoviridae Infections/diagnosis , Hemorrhagic Fever, Ebola/diagnosis , Malaria/complications , Mobile Health Units , Adolescent , Adult , Aged , Child , Child, Preschool , Clinical Laboratory Services , Ebolavirus/genetics , Female , Filoviridae , Filoviridae Infections/complications , Filoviridae Infections/virology , Guinea , Hemorrhagic Fever, Ebola/complications , Hemorrhagic Fever, Ebola/virology , Humans , Infant , Malaria/parasitology , Male , Middle Aged , RNA, Viral/blood , Viral Load , Young Adult
3.
Nature ; 533(7601): 100-4, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27147028

ABSTRACT

Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD. In particular, very little is known about human immune responses to Ebola virus. Here we evaluate the physiology of the human T cell immune response in EVD patients at the time of admission to the Ebola Treatment Center in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we identify an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by a high percentage of CD4(+) and CD8(+) T cells expressing the inhibitory molecules CTLA-4 and PD-1, which correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation, despite comparable overall T cell activation. Concomitant with virus clearance, survivors mounted a robust Ebola-virus-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology.


Subject(s)
Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/physiopathology , T-Lymphocytes/immunology , CTLA-4 Antigen/metabolism , Female , Flow Cytometry , Guinea/epidemiology , Hemorrhagic Fever, Ebola/mortality , Humans , Inflammation Mediators/immunology , Longitudinal Studies , Lymphocyte Activation , Male , Patient Discharge , Programmed Cell Death 1 Receptor/metabolism , Survivors , T-Lymphocytes/metabolism , Viral Load
4.
Nature ; 524(7563): 97-101, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26083749

ABSTRACT

West Africa is currently witnessing the most extensive Ebola virus (EBOV) outbreak so far recorded. Until now, there have been 27,013 reported cases and 11,134 deaths. The origin of the virus is thought to have been a zoonotic transmission from a bat to a two-year-old boy in December 2013 (ref. 2). From this index case the virus was spread by human-to-human contact throughout Guinea, Sierra Leone and Liberia. However, the origin of the particular virus in each country and time of transmission is not known and currently relies on epidemiological analysis, which may be unreliable owing to the difficulties of obtaining patient information. Here we trace the genetic evolution of EBOV in the current outbreak that has resulted in multiple lineages. Deep sequencing of 179 patient samples processed by the European Mobile Laboratory, the first diagnostics unit to be deployed to the epicentre of the outbreak in Guinea, reveals an epidemiological and evolutionary history of the epidemic from March 2014 to January 2015. Analysis of EBOV genome evolution has also benefited from a similar sequencing effort of patient samples from Sierra Leone. Our results confirm that the EBOV from Guinea moved into Sierra Leone, most likely in April or early May. The viruses of the Guinea/Sierra Leone lineage mixed around June/July 2014. Viral sequences covering August, September and October 2014 indicate that this lineage evolved independently within Guinea. These data can be used in conjunction with epidemiological information to test retrospectively the effectiveness of control measures, and provides an unprecedented window into the evolution of an ongoing viral haemorrhagic fever outbreak.


Subject(s)
Disease Outbreaks/statistics & numerical data , Ebolavirus/genetics , Evolution, Molecular , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/virology , Phylogeny , Spatio-Temporal Analysis , Amino Acid Substitution/genetics , Ebolavirus/isolation & purification , Female , Guinea/epidemiology , Hemorrhagic Fever, Ebola/transmission , High-Throughput Nucleotide Sequencing , Humans , Liberia/epidemiology , Male , Mali/epidemiology , Molecular Sequence Data , Sierra Leone/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...