Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
J Exp Clin Cancer Res ; 42(1): 92, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37072838

ABSTRACT

BACKGROUND: One of the key limitations of targeted cancer therapies is the rapid onset of therapy resistance. Taking BRAF-mutant melanoma as paradigm, we previously identified the lipogenic regulator SREBP-1 as a central mediator of resistance to MAPK-targeted therapy. Reasoning that lipogenesis-mediated alterations in membrane lipid poly-unsaturation lie at the basis of therapy resistance, we targeted fatty acid synthase (FASN) as key player in this pathway to evoke an exquisite vulnerability to clinical inducers of reactive oxygen species (ROS), thereby rationalizing a novel clinically actionable combination therapy to overcome therapy resistance. METHODS: Using gene expression analysis and mass spectrometry-based lipidomics of BRAF-mutant melanoma cell lines, melanoma PDX and clinical data sets, we explored the association of FASN expression with membrane lipid poly-unsaturation and therapy-resistance. Next, we treated therapy-resistant models with a preclinical FASN inhibitor TVB-3664 and a panel of ROS inducers and performed ROS analysis, lipid peroxidation tests and real-time cell proliferation assays. Finally, we explored the combination of MAPK inhibitors, TVB-3664 and arsenic trioxide (ATO, as a clinically used ROS-inducer) in Mel006 BRAF mutant PDX as a gold model of therapy resistance and assessed the effect on tumor growth, survival and systemic toxicity. RESULTS: We found that FASN expression is consistently increased upon the onset of therapy resistance in clinical melanoma samples, in cell lines and in Mel006 PDX and is associated with decreased lipid poly-unsaturation. Forcing lipid poly-unsaturation in therapy-resistant models by combining MAPK inhibition with FASN inhibition attenuated cell proliferation and rendered cells exquisitely sensitive to a host of ROS inducers. In particular, the triple combination of MAPK inhibition, FASN inhibition, and the clinical ROS-inducing compound ATO dramatically increased survival of Mel006 PDX models from 15 to 72% with no associated signs of toxicity. CONCLUSIONS: We conclude that under MAPK inhibition the direct pharmacological inhibition of FASN evokes an exquisite vulnerability to inducers of ROS by increasing membrane lipid poly-unsaturation. The exploitation of this vulnerability by combining MAPK and/or FASN inhibitors with inducers of ROS greatly delays the onset of therapy resistance and increases survival. Our work identifies a clinically actionable combinatorial treatment for therapy-resistant cancer.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Humans , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins B-raf/genetics , Membrane Lipids/pharmacology , Membrane Lipids/therapeutic use , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm
2.
Sci Rep ; 12(1): 15661, 2022 09 19.
Article in English | MEDLINE | ID: mdl-36123383

ABSTRACT

Fatty acid synthase (FASN) is an attractive therapeutic target in non-alcoholic steatohepatitis (NASH) because it drives de novo lipogenesis and mediates pro-inflammatory and fibrogenic signaling. We therefore tested pharmacological inhibition of FASN in human cell culture and in three diet induced mouse models of NASH. Three related FASN inhibitors were used; TVB-3664, TVB-3166 and clinical stage TVB-2640 (denifanstat). In human primary liver microtissues, FASN inhibiton (FASNi) decreased triglyceride (TG) content, consistent with direct anti-steatotic activity. In human hepatic stellate cells, FASNi reduced markers of fibrosis including collagen1α (COL1α1) and α-smooth muscle actin (αSMA). In CD4+ T cells exposed to NASH-related cytokines, FASNi decreased production of Th17 cells, and reduced IL-1ß release in LPS-stimulated PBMCs. In mice with diet induced NASH l, FASNi prevented development of hepatic steatosis and fibrosis, and reduced circulating IL-1ß. In mice with established diet-induced NASH, FASNi reduced NAFLD activity score, fibrosis score, ALT and TG levels. In the CCl4-induced FAT-NASH mouse model, FASN inhibition decreased hepatic fibrosis and fibrosis markers, and development of hepatocellular carcinoma (HCC) tumors by 85%. These results demonstrate that FASN inhibition attenuates inflammatory and fibrotic drivers of NASH by direct inhibition of immune and stellate cells, beyond decreasing fat accumulation in hepatocytes. FASN inhibition therefore provides an opportunity to target three key hallmarks of NASH.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Actins , Animals , Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/prevention & control , Cytokines , Disease Models, Animal , Fatty Acid Synthase, Type I , Fatty Acid Synthases , Humans , Inflammation/complications , Inflammation/drug therapy , Lipopolysaccharides , Liver Cirrhosis/complications , Liver Neoplasms/complications , Liver Neoplasms/drug therapy , Mice , Nitriles , Non-alcoholic Fatty Liver Disease/pathology , Piperidines , Triazoles , Triglycerides
4.
Nat Commun ; 13(1): 4327, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35882862

ABSTRACT

Mutant KRAS (KM), the most common oncogene in lung cancer (LC), regulates fatty acid (FA) metabolism. However, the role of FA in LC tumorigenesis is still not sufficiently characterized. Here, we show that KMLC has a specific lipid profile, with high triacylglycerides and phosphatidylcholines (PC). We demonstrate that FASN, the rate-limiting enzyme in FA synthesis, while being dispensable in EGFR-mutant or wild-type KRAS LC, is required for the viability of KMLC cells. Integrating lipidomic, transcriptomic and functional analyses, we demonstrate that FASN provides saturated and monounsaturated FA to the Lands cycle, the process remodeling oxidized phospholipids, such as PC. Accordingly, blocking either FASN or the Lands cycle in KMLC, promotes ferroptosis, a reactive oxygen species (ROS)- and iron-dependent cell death, characterized by the intracellular accumulation of oxidation-prone PC. Our work indicates that KM dictates a dependency on newly synthesized FA to escape ferroptosis, establishing a targetable vulnerability in KMLC.


Subject(s)
Ferroptosis , Lung Neoplasms , Ferroptosis/genetics , Humans , Lipid Metabolism/genetics , Lipogenesis/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Phosphatidylcholines , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
5.
Cell Death Dis ; 12(11): 977, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34675185

ABSTRACT

Inhibitors of the lipogenic enzyme fatty acid synthase (FASN) have attracted much attention in the last decade as potential targeted cancer therapies. However, little is known about the molecular determinants of cancer cell sensitivity to FASN inhibitors (FASNis), which is a major roadblock to their therapeutic application. Here, we find that pharmacological starvation of endogenously produced FAs is a previously unrecognized metabolic stress that heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors. Evaluation of the death decision circuits controlled by the BCL-2 family of proteins revealed that FASN inhibition is accompanied by the upregulation of the pro-death BH3-only proteins BIM, PUMA, and NOXA. Cell death triggered by FASN inhibition, which causally involves a palmitate/NADPH-related redox imbalance, is markedly diminished by concurrent loss of BIM or PUMA, suggesting that FASN activity controls cancer cell survival by fine-tuning the BH3 only proteins-dependent mitochondrial threshold for apoptosis. FASN inhibition results in a heightened mitochondrial apoptosis priming, shifting cells toward a primed-for-death state "addicted" to the anti-apoptotic protein BCL-2. Accordingly, co-administration of a FASNi synergistically augments the apoptosis-inducing activity of the dual BCL-XL/BCL-2 inhibitor ABT-263 (navitoclax) and the BCL-2 specific BH3-mimetic ABT-199 (venetoclax). FASN inhibition, however, fails to sensitize breast cancer cells to MCL-1- and BCL-XL-selective inhibitors such as S63845 and A1331852. A human breast cancer xenograft model evidenced that oral administration of the only clinically available FASNi drastically sensitizes FASN-addicted breast tumors to ineffective single-agents navitoclax and venetoclax in vivo. In summary, a novel FASN-driven facet of the mitochondrial priming mechanistically links the redox-buffering mechanism of FASN activity to the intrinsic apoptotic threshold in breast cancer cells. Combining next-generation FASNis with BCL-2-specific BH3 mimetics that directly activate the apoptotic machinery might generate more potent and longer-lasting antitumor responses in a clinical setting.


Subject(s)
Fatty Acid Synthases/metabolism , Mitochondria/metabolism , Neoplasms/genetics , Animals , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , Transfection
6.
Gastroenterology ; 161(5): 1475-1486, 2021 11.
Article in English | MEDLINE | ID: mdl-34310978

ABSTRACT

BACKGROUND & AIMS: Increased de novo lipogenesis creates excess intrahepatic fat and lipotoxins, propagating liver damage in nonalcoholic steatohepatitis. TVB-2640, a fatty acid synthase inhibitor, was designed to reduce excess liver fat and directly inhibit inflammatory and fibrogenic pathways. We assessed the safety and efficacy of TVB-2640 in patients with nonalcoholic steatohepatitis in the United States. METHODS: 3V2640-CLIN-005 (FASCINATE-1) was a randomized, placebo-controlled, single-blind study at 10 US sites. Adults with ≥8% liver fat, assessed by magnetic resonance imaging proton density fat fraction, and evidence of liver fibrosis by magnetic resonance elastography ≥2.5 kPa or liver biopsy were eligible. Ninety-nine patients were randomized to receive placebo or 25 mg or 50 mg of TVB-2640 (orally, once-daily for 12 weeks). The primary end points of this study were safety and relative change in liver fat after treatment. RESULTS: Liver fat increased in the placebo cohort by 4.5% relative to baseline; in contrast TVB-2640 reduced liver fat by 9.6% in the 25-mg cohort (n = 30; least squares mean: -15.5%; 95% confidence interval, -31.3 to -0.23; P = .053), and 28.1% in the 50-mg cohort (n = 28; least squares mean: -28.0%; 95% confidence interval, -44.5 to -11.6; P = .001). Eleven percent of patients in the placebo group achieved a ≥30% relative reduction of liver fat compared to 23% in the 25-mg group, and 61% in the 50-mg group (P < .001). Secondary analyses showed improvements of metabolic, pro-inflammatory and fibrotic markers. TVB-2640 was well tolerated; adverse events were mostly mild and balanced among the groups. CONCLUSIONS: TVB-2640 significantly reduced liver fat and improved biochemical, inflammatory, and fibrotic biomarkers after 12 weeks, in a dose-dependent manner in patients with nonalcoholic steatohepatitis. ClinicalTrials.gov, Number NCT03938246.


Subject(s)
Enzyme Inhibitors/therapeutic use , Fatty Acid Synthase, Type I/antagonists & inhibitors , Lipogenesis/drug effects , Liver Cirrhosis/drug therapy , Liver/drug effects , Nitriles/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Piperidines/therapeutic use , Triazoles/therapeutic use , Adult , Biomarkers/blood , Enzyme Inhibitors/adverse effects , Fatty Acid Synthase, Type I/metabolism , Female , Humans , Lipids/blood , Liver/diagnostic imaging , Liver/enzymology , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/enzymology , Male , Middle Aged , Nitriles/adverse effects , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/enzymology , Piperidines/adverse effects , Single-Blind Method , Time Factors , Treatment Outcome , Triazoles/adverse effects , United States
7.
EClinicalMedicine ; 34: 100797, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33870151

ABSTRACT

BACKGROUND: We conducted a first-in-human dose-escalation study with the oral FASN inhibitor TVB-2640 to determine the maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D), as monotherapy and with a taxane. METHODS: This completed open-label outpatient study was conducted at 11 sites in the United States and United Kingdom. Patients with previously-treated advanced metastatic solid tumors and adequate performance status and organ function were eligible. TVB-2640 was administered orally daily until PD. Dose escalation initially followed an accelerated titration design that switched to a standard 3 + 3 design after Grade 2 toxicity occurred. Disease-specific cohorts were enrolled at the MTD. Statistical analyses were primarily descriptive. Safety analyses were performed on patients who received at least 1 dose of study drug. (Clinicaltrials.gov identifier NCT02223247). FINDINGS: The study was conducted from 21 November 2013 to 07 February 2017. Overall, 136 patients received TVB-2640, 76 as monotherapy (weight-based doses of 60 mg/m2 to 240 mg/m2 and flat doses of 200 and 250 mg) and 60 in combination, (weight-based doses of 60 mg/m2 to 100 mg/m2 and flat dose of 200 mg) (55 paclitaxel, 5 docetaxel). DLTs with TVB-2640 were reversible skin and ocular effects. The MTD/RP2D was 100 mg/m2. The most common TEAEs (n,%) with TVB-2640 monotherapy were alopecia (46; 61%), PPE syndrome (35; 46%), fatigue (28; 37%), decreased appetite (20; 26%), and dry skin (17; 22%), and with TVB-2640+paclitaxel were fatigue (29 ; 53%), alopecia (25; 46%), PPE syndrome (25; 46%), nausea (22; 40%), and peripheral neuropathy (20; 36%). One fatal case of drug-related pneumonitis occurred with TVB-2640+paclitaxel; no other treatment-related deaths occurred. Target engagement (FASN inhibition) and inhibition of lipogenesis were demonstrated with TVB-2640. The disease control rate (DCR) with TVB-2640 monotherapy was 42%; no patient treated with monotherapy had a complete or partial response (CR or PR). In combination with paclitaxel, the PR rate was 11% and the DCR was 70%. Responses were seen across multiple tumor types, including in patients with KRASMUT NSCLC, ovarian, and breast cancer. INTERPRETATION: TVB-2640 demonstrated potent FASN inhibition and a predictable and manageable safety profile, primarily characterized by non-serious, reversible adverse events affecting skin and eyes. Further investigation of TVB-2640 in patients with solid tumors, particularly in KRASMUT lung, ovarian, and breast cancer, is warranted. FUNDING: This trial was funded by 3-V Biosciences, Inc. (now known as Sagimet Biosciences Inc.).

8.
Hepatology ; 72(1): 103-118, 2020 07.
Article in English | MEDLINE | ID: mdl-31630414

ABSTRACT

BACKGROUND AND AIMS: Elevated hepatic de novo lipogenesis (DNL) is a key distinguishing characteristic of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis. In rodent models of NAFLD, treatment with a surrogate of TVB-2640, a pharmacological fatty acid synthase inhibitor, has been shown to reduce hepatic fat and other biomarkers of DNL. The purpose of this phase I clinical study was to test the effect of the TVB-2640 in obese men with certain metabolic abnormalities that put them at risk for NAFLD. APPROACH AND RESULTS: Twelve subjects (mean ± SEM, 42 ± 2 years, body mass index 37.4 ± 1.2 kg/m2 , glucose 103 ± 2 mg/dL, triacylglycerols 196 ± 27 mg/dL, and elevated liver enzymes) underwent 10 days of treatment with TVB-2640 at doses ranging from 50-150 mg/day. Food intake was controlled throughout the study. Hepatic DNL was measured before and after an oral fructose/glucose bolus using isotopic labeling with 1-13 C1 -acetate intravenous infusion, followed by measurement of labeled very low-density lipoprotein palmitate via gas chromatography mass spectometry. Substrate oxidation was measured by indirect calorimetry. Across the range of doses, fasting DNL was reduced by up to 90% (P = 0.003). Increasing plasma concentrations of TVB-2640 were associated with progressive reductions in the percent of fructose-stimulated peak fractional DNL (R2  = -0.749, P = 0.0003) and absolute DNL area under the curve 6 hours following fructose/glucose bolus (R2  = -0.554, P = 0.005). For all subjects combined, alanine aminotransferase was reduced by 15.8 ± 8.4% (P = 0.05). Substrate oxidation was unchanged, and safety monitoring revealed that the drug was well tolerated, without an increase in plasma triglycerides. Alopecia occurred in 2 subjects (reversed after stopping the drug), but otherwise no changes were observed in fasting glucose, insulin, ketones, and renal function. CONCLUSION: These data support the therapeutic potential of a fatty acid synthase inhibitor, TVB-2640 in particular, in patients with NAFLD and nonalcoholic steatohepatitis.


Subject(s)
Enzyme Inhibitors/pharmacology , Fatty Acid Synthases/antagonists & inhibitors , Lipogenesis/drug effects , Liver/metabolism , Metabolic Diseases/metabolism , Nitriles/pharmacology , Piperidines/pharmacology , Triazoles/pharmacology , Adult , Humans , Male
9.
Oncotarget ; 9(37): 24787-24800, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29872506

ABSTRACT

Fatty Acid Synthase (FASN), a key enzyme of de novo lipogenesis, is upregulated in many cancers including colorectal cancer (CRC); increased FASN expression is associated with poor prognosis. Potent FASN inhibitors (TVBs) developed by 3-V Biosciences demonstrate anti-tumor activity in vitro and in vivo and a favorable tolerability profile in a Phase I clinical trial. However, CRC characteristics associated with responsiveness to FASN inhibition are not fully understood. We evaluated the effect of TVB-3664 on tumor growth in nine CRC patient-derived xenografts (PDXs) and investigated molecular and metabolic changes associated with CRC responsiveness to FASN inhibition. CRC cells and PDXs showed a wide range of sensitivity to FASN inhibition. TVB-3664 treatment showed significant response (reduced tumor volume) in 30% of cases. Anti-tumor effect of TVB-3664 was associated with a significant decrease in a pool of adenine nucleotides and alterations in lipid composition including a significant reduction in fatty acids and phospholipids and an increase in lactosylceramide and sphingomyelin in PDXs sensitive to FASN inhibition. Moreover, Akt, Erk1/2 and AMPK were major oncogenic pathways altered by TVBs. In summary, we demonstrated that novel TVB inhibitors show anti-tumor activity in CRC and this activity is associated with a decrease in activation of Akt and Erk1/2 oncogenic pathways and significant alteration of lipid composition of tumors. Further understanding of genetic and metabolic characteristics of tumors susceptible to FASN inhibition may enable patient selection and personalized medicine approaches in CRC.

10.
Virus Genes ; 53(4): 650-655, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28391502

ABSTRACT

Human cytomegalovirus (HCMV) is an important opportunistic pathogen in immunocompromised patients and a major cause of congenital birth defects when acquired in utero. In the 1990s, four chimeric viruses were constructed by replacing genome segments of the high passage Towne strain with segments of the low passage Toledo strain, with the goal of obtaining live attenuated vaccine candidates that remained safe but were more immunogenic than the overly attenuated Towne vaccine. The chimeras were found to be safe when administered to HCMV-seronegative human volunteers, but to differ significantly in their ability to induce seroconversion. This suggests that chimera-specific genetic differences impacted the ability to replicate or persist in vivo and the consequent ability to induce an antibody response. To identify specific genomic breakpoints between Towne and Toledo sequences and establish whether spontaneous mutations or rearrangements had occurred during construction of the chimeras, complete genome sequences were determined. No major deletions or rearrangements were observed, although a number of unanticipated mutations were identified. However, no clear association emerged between the genetic content of the chimeras and the reported levels of vaccine-induced HCMV-specific humoral or cellular immune responses, suggesting that multiple genetic determinants are likely to impact immunogenicity. In addition to revealing the genome organization of the four vaccine candidates, this study provided an opportunity to probe the genetics of HCMV attenuation in humans. The results may be valuable in the future design of safe live or replication-defective vaccines that optimize immunogenicity and efficacy.


Subject(s)
Cytomegalovirus Infections/virology , Cytomegalovirus Vaccines/immunology , Cytomegalovirus/genetics , Cytomegalovirus/immunology , Recombination, Genetic , Antibodies, Viral/immunology , Cytomegalovirus/classification , Cytomegalovirus/isolation & purification , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/prevention & control , Cytomegalovirus Vaccines/administration & dosage , Cytomegalovirus Vaccines/genetics , Genome, Viral , Genomics , Humans , Immunization
11.
Pharmacol Ther ; 177: 23-31, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28202364

ABSTRACT

Decades of preclinical and natural history studies have highlighted the potential of fatty acid synthase (FASN) as a bona fide drug target for oncology. This review will highlight the foundational concepts upon which this perspective is built. Published studies have shown that high levels of FASN in patient tumor tissues are present at later stages of disease and this overexpression predicts poor prognosis. Preclinical studies have shown that experimental overexpression of FASN in previously normal cells leads to changes that are critical for establishing a tumor phenotype. Once the tumor phenotype is established, FASN elicits several changes to the tumor cell and becomes intertwined with its survival. The product of FASN, palmitate, changes the biophysical nature of the tumor cell membrane; membrane microdomains enable the efficient assembly of signaling complexes required for continued tumor cell proliferation and survival. Membranes densely packed with phospholipids containing saturated fatty acids become resistant to the action of other chemotherapeutic agents. Inhibiting FASN leads to tumor cell death while sparing normal cells, which do not have the dependence of this enzyme for normal functions, and restores membrane architecture to more normal properties thereby resensitizing tumors to killing by chemotherapies. One compound has recently reached clinical studies in solid tumor patients and highlights the need for continued evaluation of the role of FASN in tumor cell biology. Significant advances have been made and much remains to be done to optimally apply this class of pharmacological agents for the treatment of specific cancers.


Subject(s)
Fatty Acid Synthases/metabolism , Neoplasms/metabolism , Animals , Antigens, Neoplasm/immunology , Fatty Acid Synthases/antagonists & inhibitors , Fatty Acid Synthases/immunology , Humans , Lipogenesis , Neoplasms/drug therapy , Neoplasms/immunology , Oncogenes , Prognosis
12.
EBioMedicine ; 16: 51-62, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28159572

ABSTRACT

Palmitate, the enzymatic product of FASN, and palmitate-derived lipids support cell metabolism, membrane architecture, protein localization, and intracellular signaling. Tubulins are among many proteins that are modified post-translationally by acylation with palmitate. We show that FASN inhibition with TVB-3166 or TVB-3664 significantly reduces tubulin palmitoylation and mRNA expression. Disrupted microtubule organization in tumor cells is an additional consequence of FASN inhibition. FASN inhibition combined with taxane treatment enhances inhibition of in vitro tumor cell growth compared to treatment with either agent alone. In lung, ovarian, prostate, and pancreatic tumor xenograft studies, FASN inhibition and paclitaxel or docetaxel combine to inhibit xenograft tumor growth with significantly enhanced anti-tumor activity. Tumor regression was observed in 3 of 6 tumor xenograft models. FASN inhibition does not affect cellular taxane concentration in vitro. Our data suggest a mechanism of enhanced anti-tumor activity of the FASN and taxane drug combination that includes inhibition of tubulin palmitoylation and disruption of microtubule organization in tumor cells, as well as a sensitization of tumor cells to FASN inhibition-mediated effects that include gene expression changes and inhibition of ß-catenin. Together, the results strongly support investigation of combined FASN inhibition and taxane treatment as a therapy for a variety of human cancers.


Subject(s)
Bridged-Ring Compounds/pharmacology , Enzyme Inhibitors/pharmacology , Fatty Acid Synthase, Type I/antagonists & inhibitors , Microtubules/drug effects , Taxoids/pharmacology , Tubulin/metabolism , Xenograft Model Antitumor Assays/methods , A549 Cells , Animals , Antineoplastic Agents/pharmacology , Azetidines/chemistry , Azetidines/pharmacology , Blotting, Western , Carcinogenesis/drug effects , Carcinogenesis/genetics , Cell Line , Cell Line, Tumor , Enzyme Inhibitors/chemistry , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lipoylation/drug effects , Mice , Mice, Inbred BALB C , Mice, Nude , Microscopy, Confocal , Microtubules/metabolism , Molecular Structure , Nitriles/chemistry , Nitriles/pharmacology , Phosphorylation/drug effects , Pyrazoles/chemistry , Pyrazoles/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , beta Catenin/genetics , beta Catenin/metabolism
13.
J Infect Dis ; 214(9): 1341-1348, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27521362

ABSTRACT

BACKGROUND: Human cytomegalovirus (HCMV) infection causes disease in newborns and transplant recipients. A HCMV vaccine (Towne) protects transplant recipients. METHODS: The genomes of Towne and the nonattenuated Toledo strain were recombined, yielding 4 Towne/Toledo chimera vaccines. Each of 36 HCMV-seronegative men received 1 subcutaneous dose of 10, 100, or 1000 plaque-forming units (PFU) in cohorts of 3. Safety and immunogenicity were evaluated over 12 weeks after immunization and for 52 weeks for those who seroconverted. RESULTS: There were no serious local or systemic reactions. No subject had HCMV in urine or saliva. For chimera 3, none of 9 subjects seroconverted. For chimera 1, 1 of 9 seroconverted (the seroconverter received 100 PFU). For chimera 2, 3 subjects seroconverted (1 received 100 PFU, and 2 received 1000 PFU). For chimera 4, 7 subjects seroconverted (1 received 10 PFU, 3 received 100 PFU, and 3 received 1000 PFU). All 11 seroconverters developed low but detectable levels of neutralizing activity. CD4+ T-cell responses were detectable in 1 subject (who received 100 PFU of chimera 4). Seven subjects receiving chimera 2 or 4 had detectable CD8+ T-cell responses to IE1; 3 responded to 1-2 additional antigens. CONCLUSIONS: The Towne/Toledo chimera vaccine candidates were well tolerated and were not excreted. Additional human trials of chimeras 2 and 4 are appropriate. CLINICAL TRIALS REGISTRATION: NCT01195571.


Subject(s)
Chimera/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus Vaccines/immunology , Cytomegalovirus/immunology , Vaccines, Synthetic/immunology , Adult , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , Humans , Lymphocyte Activation/immunology , Male , Middle Aged , Vaccination/methods , Vaccines, Attenuated/immunology , Viral Vaccines/immunology , Young Adult
14.
PLoS One ; 10(12): e0144648, 2015.
Article in English | MEDLINE | ID: mdl-26659560

ABSTRACT

Fatty acid synthase (FASN) catalyzes the de novo synthesis of palmitate, a fatty acid utilized for synthesis of more complex fatty acids, plasma membrane structure, and post-translational palmitoylation of host and viral proteins. We have developed a potent inhibitor of FASN (TVB-3166) that reduces the production of respiratory syncytial virus (RSV) progeny in vitro from infected human lung epithelial cells (A549) and in vivo from mice challenged intranasally with RSV. Addition of TVB-3166 to the culture medium of RSV-infected A549 cells reduces viral spread without inducing cytopathic effects. The antiviral effect of the FASN inhibitor is a direct consequence of reducing de novo palmitate synthesis; similar doses are required for both antiviral activity and inhibition of palmitate production, and the addition of exogenous palmitate to TVB-3166-treated cells restores RSV production. TVB-3166 has minimal effect on RSV entry but significantly reduces viral RNA replication, protein levels, viral particle formation and infectivity of released viral particles. TVB-3166 substantially impacts viral replication, reducing production of infectious progeny 250-fold. In vivo, oral administration of TVB-3166 to RSV-A (Long)-infected BALB/c mice on normal chow, starting either on the day of infection or one day post-infection, reduces RSV lung titers 21-fold and 9-fold respectively. Further, TVB-3166 also inhibits the production of RSV B, human parainfluenza 3 (PIV3), and human rhinovirus 16 (HRV16) progeny from A549, HEp2 and HeLa cells respectively. Thus, inhibition of FASN and palmitate synthesis by TVB-3166 significantly reduces RSV progeny both in vitro and in vivo and has broad-spectrum activity against other respiratory viruses. FASN inhibition may alter the composition of regions of the host cell membrane where RSV assembly or replication occurs, or change the membrane composition of RSV progeny particles, decreasing their infectivity.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Fatty Acid Synthase, Type I/antagonists & inhibitors , Protein Processing, Post-Translational , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Viruses/drug effects , Virus Replication/drug effects , Administration, Oral , Animals , Antiviral Agents/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Gene Expression , HeLa Cells , Hep G2 Cells , Host-Pathogen Interactions , Humans , Lipoylation/drug effects , Mice , Mice, Inbred BALB C , Palmitic Acid/antagonists & inhibitors , Palmitic Acid/metabolism , Parainfluenza Virus 3, Human/drug effects , Parainfluenza Virus 3, Human/growth & development , Parainfluenza Virus 3, Human/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/enzymology , Respiratory Mucosa/virology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/growth & development , Respiratory Syncytial Viruses/metabolism , Rhinovirus/drug effects , Rhinovirus/growth & development , Rhinovirus/metabolism , Viral Proteins/antagonists & inhibitors , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/drug effects , Virion/growth & development , Virion/metabolism
15.
EBioMedicine ; 2(8): 808-24, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26425687

ABSTRACT

Inhibition of de novo palmitate synthesis via fatty acid synthase (FASN) inhibition provides an unproven approach to cancer therapy with a strong biological rationale. FASN expression increases with tumor progression and associates with chemoresistance, tumor metastasis, and diminished patient survival in numerous tumor types. TVB-3166, an orally-available, reversible, potent, and selective FASN inhibitor induces apoptosis, inhibits anchorage-independent cell growth under lipid-rich conditions, and inhibits in-vivo xenograft tumor growth. Dose-dependent effects are observed between 20-200 nM TVB-3166, which agrees with the IC50 in biochemical FASN and cellular palmitate synthesis assays. Mechanistic studies show that FASN inhibition disrupts lipid raft architecture, inhibits biological pathways such as lipid biosynthesis, PI3K-AKT-mTOR and ß-catenin signal transduction, and inhibits expression of oncogenic effectors such as c-Myc; effects that are tumor-cell specific. Our results demonstrate that FASN inhibition has anti-tumor activities in biologically diverse preclinical tumor models and provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers, including those expressing mutant K-Ras, ErbB2, c-Met, and PTEN. The reported findings inform ongoing studies to link mechanisms of action with defined tumor types and advance the discovery of biomarkers supporting development of FASN inhibitors as cancer therapeutics. RESEARCH IN CONTEXT: Fatty acid synthase (FASN) is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition with TVB-3166 leads to selective death of tumor cells, without significant effect on normal cells, and inhibits in vivo xenograft tumor growth at well-tolerated doses. Candidate biomarkers for selecting tumors highly sensitive to FASN inhibition are identified. These preclinical data provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers.


Subject(s)
Apoptosis , Cell Membrane/metabolism , Fatty Acid Synthase, Type I/biosynthesis , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/biosynthesis , Neoplasms/metabolism , Palmitic Acid/metabolism , Signal Transduction , Cell Line, Tumor , Cell Membrane/pathology , Enzyme Inhibitors/pharmacology , Fatty Acid Synthase, Type I/antagonists & inhibitors , Humans , Neoplasm Proteins/antagonists & inhibitors , Neoplasms/pathology
16.
ACS Chem Biol ; 10(7): 1616-23, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-25871544

ABSTRACT

Fatty acid synthase (FASN) generates the de novo source of lipids for cell proliferation and is a promising cancer therapy target. Development of FASN inhibitors, however, necessitates a better understanding of sensitive and resistant cancer types to optimize patient treatment. Indeed, testing the cytotoxic effects of FASN inhibition across human cancer cells revealed diverse sensitivities. We show here that metabolic incorporation of glucose into specific complex lipid species strongly predicts FASN inhibitor sensitivity. We also show that the levels of one of these lipid classes, protein kinase C (PKC) stimulator diacylglycerols, are lowered upon FASN inhibitor treatment in sensitive compared to resistant cells and that PKC activators and inhibitors rescue cell death in sensitive cells and sensitize resistant cells, respectively. Our findings not only reveal a biomarker for predicting FASN sensitivity in cancer cells but also a put forth a heretofore unrecognized mechanism underlying the anticancer effects of FASN inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Diglycerides/metabolism , Enzyme Inhibitors/pharmacology , Fatty Acid Synthases/antagonists & inhibitors , Neoplasms/drug therapy , Cell Line, Tumor , Cell Survival/drug effects , Drug Resistance, Neoplasm , Fatty Acid Synthases/metabolism , Glucose/metabolism , Humans , Neoplasms/metabolism , Protein Kinase C/metabolism , Signal Transduction/drug effects
17.
J Virol ; 88(14): 8139-52, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24807726

ABSTRACT

Live attenuated cold-adapted (ca) H5N1, H7N3, H6N1, and H9N2 influenza vaccine viruses replicated in the respiratory tract of mice and ferrets, and 2 doses of vaccines were immunogenic and protected these animals from challenge infection with homologous and heterologous wild-type (wt) viruses of the corresponding subtypes. However, when these vaccine candidates were evaluated in phase I clinical trials, there were inconsistencies between the observations in animal models and in humans. The vaccine viruses did not replicate well and immune responses were variable in humans, even though the study subjects were seronegative with respect to the vaccine viruses before vaccination. Therefore, we sought a model that would better reflect the findings in humans and evaluated African green monkeys (AGMs) as a nonhuman primate model. The distribution of sialic acid (SA) receptors in the respiratory tract of AGMs was similar to that in humans. We evaluated the replication of wt and ca viruses of avian influenza (AI) virus subtypes H5N1, H6N1, H7N3, and H9N2 in the respiratory tract of AGMs. All of the wt viruses replicated efficiently, while replication of the ca vaccine viruses was restricted to the upper respiratory tract. Interestingly, the patterns and sites of virus replication differed among the different subtypes. We also evaluated the immunogenicity and protective efficacy of H5N1, H6N1, H7N3, and H9N2 ca vaccines. Protection from wt virus challenge correlated well with the level of serum neutralizing antibodies. Immune responses were slightly better when vaccine was delivered by both intranasal and intratracheal delivery than when it was delivered intranasally by sprayer. We conclude that live attenuated pandemic influenza virus vaccines replicate similarly in AGMs and human subjects and that AGMs may be a useful model to evaluate the replication of ca vaccine candidates. Importance: Ferrets and mice are commonly used for preclinical evaluation of influenza vaccines. However, we observed significant inconsistencies between observations in humans and in these animal models. We used African green monkeys (AGMs) as a nonhuman primate (NHP) model for a comprehensive and comparative evaluation of pairs of wild-type and pandemic live attenuated influenza virus vaccines (pLAIV) representing four subtypes of avian influenza viruses and found that pLAIVs replicate similarly in AGMs and humans and that AGMs can be useful for evaluation of the protective efficacy of pLAIV.


Subject(s)
Influenza A virus/growth & development , Influenza A virus/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Primate Diseases/prevention & control , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Chlorocebus aethiops , Disease Models, Animal , Female , Humans , Influenza Vaccines/administration & dosage , Influenza, Human , Male , Mice , Orthomyxoviridae Infections/immunology , Pandemics , Primate Diseases/immunology , Respiratory System/virology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology
18.
J Virol ; 88(5): 2867-76, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24371061

ABSTRACT

UNLABELLED: H2 influenza viruses have not circulated in humans since 1968, and therefore a significant portion of the population would be susceptible to infection should H2 influenza viruses reemerge. H2 influenza viruses continue to circulate in avian reservoirs worldwide, and these reservoirs are a potential source from which these viruses could emerge. Three reassortant cold-adapted (ca) H2 pandemic influenza vaccine candidates with hemagglutinin (HA) and neuraminidase (NA) genes derived from the wild-type A/Japan/305/1957 (H2N2) (Jap/57), A/mallard/6750/1978 (H2N2) (mal/78), or A/swine/MO/4296424/2006 (H2N3) (sw/06) viruses and the internal protein gene segments from the A/Ann Arbor/6/60 ca virus were generated by plasmid-based reverse genetics (Jap/57 ca, mal/78 ca, and sw/06 ca, respectively). The vaccine candidates exhibited the in vitro phenotypes of temperature sensitivity and cold adaptation and were restricted in replication in the respiratory tract of ferrets. In mice and ferrets, the vaccines elicited neutralizing antibodies and conferred protection against homologous wild-type virus challenge. Of the three candidates, the sw/06 ca vaccine elicited cross-reactive antibodies and provided significant protection against the greatest number of heterologous viruses. These observations suggest that the sw/06 ca vaccine should be further evaluated in a clinical trial as an H2 pandemic influenza vaccine candidate. IMPORTANCE: Influenza pandemics arise when novel influenza viruses are introduced into a population with little prior immunity to the new virus and often result in higher rates of illness and death than annual seasonal influenza epidemics. An influenza H2 subtype virus caused a pandemic in 1957, and H2 viruses circulated in humans till 1968. H2 influenza viruses continue to circulate in birds, and the development of an H2 influenza vaccine candidate is therefore considered a priority in preparing for future pandemics. However, we cannot predict whether a human H2 virus will reemerge or a novel avian H2 virus will emerge. We identified three viruses as suitable candidates for further evaluation as vaccines to protect against H2 influenza viruses and evaluated the immune responses and protection that these three vaccines provided in mice and ferrets.


Subject(s)
Influenza A Virus, H2N2 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Vaccines, Attenuated/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cross Reactions/immunology , Female , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H2N2 Subtype/genetics , Mice , Molecular Sequence Data , Orthomyxoviridae Infections/pathology , Reassortant Viruses/genetics , Reassortant Viruses/immunology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/pathology , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology , Sequence Alignment , Virus Replication
19.
Influenza Other Respir Viruses ; 7(1): 66-73, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22417012

ABSTRACT

BACKGROUND: Live attenuated influenza vaccines (LAIV) against a variety of strains of pandemic potential are being developed and tested. We describe the results of an open-label phase I trial of a live attenuated H2N2 virus vaccine. OBJECTIVES: To evaluate the safety, infectivity, and immunogenicity of a live attenuated H2N2 influenza virus vaccine. PARTICIPANTS/METHODS: The A/Ann Arbor/6/60 (H2N2) virus used in this study is the attenuated, cold-adapted, temperature-sensitive strain that provides the genetic backbone of seasonal LAIV (MedImmune). We evaluated the safety, infectivity, and immunogenicity of two doses of 10(7) TCID(50) of this vaccine administered by nasal spray 4 weeks apart to normal healthy seronegative adults. RESULTS: Twenty-one participants received a first dose of the vaccine; 18 participants received a second dose. No serious adverse events occurred during the trial. The most common adverse events after vaccination were headache and musculoskeletal pain. The vaccine was restricted in replication: 24% and 17% had virus detectable by culture or rRT-PCR after the first and second dose, respectively. Antibody responses to the vaccine were also restricted: 24% of participants developed an antibody response as measured by either hemagglutination-inhibition assay (10%), or ELISA for H2 HA-specific serum IgG (24%) or IgA (16%) after either one or two doses. None of the participants had a neutralizing antibody response. Vaccine-specific IgG-secreting cells as measured by enzyme-linked immunospot increased from a mean of 0·5 to 2·0/10(6) peripheral blood mononuclear cells (PBMCs); vaccine-specific IgA-secreting cells increased from 0·1 to 0·5/10(6) PBMCs. CONCLUSIONS: The live attenuated H2N2 1960 AA ca vaccine demonstrated a safety profile consistent with seasonal trivalent LAIV but was restricted in replication and minimally immunogenic in healthy seronegative adults.


Subject(s)
Influenza A Virus, H2N2 Subtype/immunology , Influenza Vaccines , Influenza, Human/prevention & control , Adult , Antibodies, Viral/blood , Female , Humans , Influenza A Virus, H2N2 Subtype/genetics , Influenza A Virus, H2N2 Subtype/isolation & purification , Influenza A Virus, H2N2 Subtype/physiology , Influenza Vaccines/administration & dosage , Influenza Vaccines/adverse effects , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/virology , Male , Treatment Outcome , Vaccination , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/immunology , Virus Replication , Virus Shedding , Young Adult
20.
Methods Mol Biol ; 865: 163-74, 2012.
Article in English | MEDLINE | ID: mdl-22528159

ABSTRACT

The first live attenuated influenza vaccine (LAIV) was licensed in the USA in 2003; it is a trivalent vaccine composed of two type A (H1N1 and H3N2) and one type B influenza virus each at 10(7) fluorescent focus units (FFU). Each influenza vaccine strain is a reassortant virus that contains the hemagglutinin (HA) and neuraminidase (NA) gene segments from a wild-type influenza virus and the six internal protein gene segments from a master donor virus (MDV) of either cold-adapted A/Ann Arbor/6/60 or B/Ann Arbor/1/66. MDV confers the cold-adapted, temperature-sensitive, and attenuation phenotypes to the vaccine strains. The reassortant vaccine seeds are currently produced by reverse genetics and amplified in specific pathogen-free (SPF) 9-11 days old embryonated chicken eggs for manufacture. In addition, MDCK cell culture manufacture processes have been developed to produce LAIV for research use and with modifications for clinical and/or commercial grade material production.


Subject(s)
Hemagglutinins/genetics , Influenza Vaccines/biosynthesis , Influenza, Human/prevention & control , Neuraminidase/genetics , Orthomyxoviridae/genetics , Reassortant Viruses/genetics , Viral Proteins/genetics , Animals , Cell Line , Chick Embryo , Cold Temperature , Culture Media, Serum-Free , Dogs , Genetic Engineering/methods , Hemagglutinins/immunology , Humans , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/virology , Neuraminidase/immunology , Orthomyxoviridae/immunology , Plasmids , Reassortant Viruses/immunology , Reverse Genetics/methods , Vaccines, Attenuated , Viral Proteins/immunology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...