Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Publication year range
1.
Phys Rev Lett ; 124(17): 176402, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32412257

ABSTRACT

Landau-level spectroscopy, the optical analysis of electrons in materials subject to a strong magnetic field, is a versatile probe of the electronic band structure and has been successfully used in the identification of novel states of matter such as Dirac electrons, topological materials or Weyl semimetals. The latter arise from a complex interplay between crystal symmetry, spin-orbit interaction, and inverse ordering of electronic bands. Here, we report on unusual Landau-level transitions in the monopnictide TaP that decrease in energy with increasing magnetic field. We show that these transitions arise naturally at intermediate energies in time-reversal-invariant Weyl semimetals where the Weyl nodes are formed by a partially gapped nodal-loop in the band structure. We propose a simple theoretical model for electronic bands in these Weyl materials that captures the collected magneto-optical data to great extent.

2.
J Phys Condens Matter ; 30(48): 485403, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30418951

ABSTRACT

We measured the optical reflectivity of the Dirac material Au2Pb in a broad frequency range (30-48 000 cm-1) for temperatures between 9 and 300 K. The optical conductivity, computed from the reflectivity, is dominated by free-carrier contributions from topologically trivial bulk bands at all temperatures. The temperature-independent total plasma frequency of these carriers is [Formula: see text] eV. Overall, optical response of Au2Pb is typically metallic with no signs of localization and bad-metal behavior.

SELECTION OF CITATIONS
SEARCH DETAIL