Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Am Chem Soc ; 130(47): 16038-44, 2008 Nov 26.
Article in English | MEDLINE | ID: mdl-18959403

ABSTRACT

In this study we present a method for defining the binding modes of a set of structurally related isoindolinone inhibitors of the MDM2-p53 interaction. This approach derives the location and orientation of isoindolinone binding, based on an analysis of the patterns of magnitude and direction of chemical shift perturbations for a series of inhibitors of the MDM2-p53 interaction. The MDM2-p53 complex is an attractive target for therapeutic intervention in cancer cells with intact tumor suppressor p53, as it offers the possibility of releasing p53 by blocking the MDM2-p53 binding site with a small molecule antagonist to promote apoptosis. Isoindolinones are a novel class of MDM2-antagonists of moderate affinity, which still require the development of more potent candidates for clinical applications. As the applicability of conventional structural methods to this system is limited by a number of fundamental factors, the exploitation of the information contained in chemical shift perturbations has offered a useful route to obtaining structural information to guide the development of more potent compounds. For a set of 12 structurally related isoindolinones, the data suggests 4 different orientations of binding, caused by subtle changes in the chemical structure of the inhibitors.


Subject(s)
Indoles/chemistry , Indoles/pharmacology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism , Binding Sites , Models, Molecular , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Protein Binding
2.
J Med Chem ; 49(21): 6209-21, 2006 Oct 19.
Article in English | MEDLINE | ID: mdl-17034127

ABSTRACT

From a set of weakly potent lead compounds, using in silico screening and small library synthesis, a series of 2-alkyl-3-aryl-3-alkoxyisoindolinones has been identified as inhibitors of the MDM2-p53 interaction. Two of the most potent compounds, 2-benzyl-3-(4-chlorophenyl)-3-(3-hydroxypropoxy)-2,3-dihydroisoindol-1-one (76; IC(50) = 15.9 +/- 0.8 microM) and 3-(4-chlorophenyl)-3-(4-hydroxy-3,5-dimethoxybenzyloxy)-2-propyl-2,3-dihydroisoindol-1-one (79; IC(50) = 5.3 +/- 0.9 microM), induced p53-dependent gene transcription, in a dose-dependent manner, in the MDM2 amplified, SJSA human sarcoma cell line.


Subject(s)
Antineoplastic Agents/chemical synthesis , Indoles/chemical synthesis , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Combinatorial Chemistry Techniques , Drug Screening Assays, Antitumor , Humans , Indoles/chemistry , Indoles/pharmacology , Models, Molecular , Protein Binding , Stereoisomerism , Structure-Activity Relationship , Transcription, Genetic , Tumor Suppressor Protein p53/genetics
3.
Bioorg Med Chem Lett ; 15(5): 1515-20, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15713419

ABSTRACT

A series of 2-N-alkyl-3-aryl-3-alkoxyisoindolinones has been synthesised and evaluated as inhibitors of the MDM2-p53 interaction. The most potent compound, 3-(4-chlorophenyl)-3-(4-hydroxy-3,5-dimethoxybenzyloxy)-2-propyl-2,3-dihydroisoindol-1-one (NU8231), exhibited an IC50 of 5.3 +/- 0.9 microM in an ELISA assay, and induced p53-dependent gene transcription in a dose-dependent manner, in the SJSA human sarcoma cell line.


Subject(s)
Indoles/chemistry , Indoles/pharmacology , Nuclear Proteins/drug effects , Proto-Oncogene Proteins/drug effects , Tumor Suppressor Protein p53/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Indoles/chemical synthesis , Models, Molecular , Molecular Structure , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Binding/drug effects , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-mdm2 , Structure-Activity Relationship , Transcription, Genetic/drug effects , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL