Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cureus ; 16(4): e58923, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38800277

ABSTRACT

Background While the effects of exercise on the cardiovascular system are well documented, ultra-endurance sports involve distances beyond the scope of traditional marathons and have grown in popularity at a staggering pace in recent years. While short-term high-intensity exercise stimulates sympathetic rises in heart rate (HR) and blood pressure (BP), the depletion of fluid and electrolyte reserves characteristic of ultra-endurance sports may contribute to decreases in overall BP after the race. If decompensation of the autonomic safety net occurs, orthostatic hypotension as a result of fluid loss during an event may cause fatigue, dizziness, syncope, or collapse. Methodology Subjects were recruited by emails sent to race participants and at pre-race meetings, and no participants were excluded from the study. We observed BP and HR changes in subjects before and after ultramarathon activity in both supine and standing positions over multiple races of variant length and terrain from 50 to 240 km from 2013 to 2018. Participants entered races in Florida, with a mean age of 43.8 and an average body mass index (BMI) of 21.2. In addition to pre-race and post-race measurements, positional post-race BPs and HRs were analyzed for orthostatic trends. Results Of those who participated, 140 completed the events and post-race HR and BP measurements were recorded. The mean systolic blood pressure (SBP) increase from pre-race to post-race standing was 21 mmHg, while the mean diastolic blood pressure (DBP) rise was 13 mmHg. While in a supine position, there was a 15 mmHg increase in SBP from pre-race to post-race, along with a 7 mmHg rise in diastolic pressure. Post-race supine to standing average BP change was insignificant. In the supine position, the mean HR increased by 20 beats per minute (bpm) after the race and by 27 bpm while standing. After the race, the average increase in HR supine to standing was 15 bpm. Conclusions The SBP changed much more notably than diastolic pressures likely due to the increase in stroke volume associated with the sympathetic response during exercise. HR values also climbed as a result of exercise stress in the setting of catecholamine release, and the combined influence contributed to increased cardiac output despite water and electrolyte loss during the event. Post-race, no trends of orthostatic hypotension were noted either with HR or BP when rising from a supine position. The significance of the contribution of fluid intake during the race to compensatory mechanisms under neural control requires further study.

2.
Cureus ; 15(10): e46801, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37954749

ABSTRACT

The rise of ultraendurance sports in the past two decades warrants evaluation of the impact on the heart and vessels of a growing number of athletes participating. Blood pressure is a simple, inexpensive method to evaluate one dimension of an athlete's cardiovascular health. No systematic review or meta-analysis to date has chronicled and delineated the effects of ultraendurance races, such as ultramarathons, marathons, half-marathons, and Ironman triathlon events, specifically on heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP), and mean arterial pressure (MAP) measurements in supine and standing positions before and after the event. This meta-analysis reviews the effects of ultraendurance events on positional and calculated hemodynamic values. Data were extracted from 38 studies and analyzed using a random effects model with a total of 1,645 total blood pressure measurements. Of these, 326 values were obtained from a standing position, and 1,319 blood pressures were taken supine. Pre-race and post-race measurements were evaluated for clinical significance using established standards of hypotension and orthostasis. HR and calculated BP features, such as PP and MAP, were evaluated. Across all included studies, the mean supine post-race HR increased by 21±8 beats per minute (bpm) compared to pre-race values. The mean standing post-race HR increased by 23±14 bpm when compared with pre-race HR. Overall, there was a mean SBP decrease of 19±9 mmHg and a DBP decrease of 9±5 mmHg post-race versus pre-race values. MAP variations reflected SBP and DBP changes. The mean supine and standing pre-race blood pressures across studies were systolic (126±7; 124±14) and diastolic (76±6; 75±12), suggesting that some athletes may enter races with existing hypertension. The post-race increase in the mean HR and decline in mean blood pressure across examined studies suggest that during long-term events, ultramarathon athletes perform with relatively asymptomatic hypotension.

SELECTION OF CITATIONS
SEARCH DETAIL
...