Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Prog ; 35(5): e2865, 2019 09.
Article in English | MEDLINE | ID: mdl-31180183

ABSTRACT

Glycation, the nonenzymatic reaction between the reducing sugar glucose and the primary amine residues on amino acid side chains, commonly occurs in the cell culture supernatant during production of therapeutic monoclonal antibodies (mAbs). While glycation has the potential to impact efficacy and pharmacokinetic properties for mAbs, the most common undesirable impact of glycation is on the distribution of charged species, often a release specification for commercial processes. Existing empirical approaches are usually insufficient to rationalize the effects of cell line and process changes on glycation. To address this gap, we developed a kinetic model for estimating mAb glycation levels during the cell culture process. The rate constant for glycation, including temperature and pH dependence, was estimated by fitting the kinetic model to time-course glycation data from bioreactors operated at different process settings that yielded a wide range of glycation values. The parameter values were further validated by independently estimating glycation rate constants using cell-free incubation studies at various temperatures. The model was applied to another mAb, by re-estimating the activation energy to account for effect of a glycation "hotspot". The model was further utilized to study the role of temperature shift as an approach to reduce glycation levels in the manufacturing process for mAb2. While a downshift in temperature resulted in lowering of glycation levels for mAb2, the model helped elucidate that this effect was caused due to contribution from changes in glucose consumption, mAb secretion and temperature, instead of a direct impact of temperature alone on the kinetic rate of glycation.


Subject(s)
Antibodies, Monoclonal/metabolism , Biological Therapy , Models, Biological , Animals , Antibodies, Monoclonal/chemistry , CHO Cells , Cells, Cultured , Cricetulus , Glycosylation , Kinetics
2.
Exp Hematol ; 37(11): 1340-1352.e3, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19715739

ABSTRACT

OBJECTIVE: Megakaryocytic cells (Mks) undergo endomitosis and become polyploid. Mk ploidy correlates with platelet production. We previously showed that nicotinamide (NIC) greatly increases Mk ploidy in cultures of human mobilized peripheral blood CD34(+) cells. This study aims to examine the generality of NIC effects, NIC's impact on Mk ultrastructure, and potential mechanisms for the increased ploidy. MATERIALS AND METHODS: We used electron microscopy to examine Mk ultrastructure and flow cytometry to evaluate NIC effects on Mk differentiation and ploidy in mobilized peripheral blood CD34(+) cell cultures under diverse megakaryopoietic conditions. Mk ploidy and NAD(H) content were evaluated for NIC and other NAD(+) precursors. We tested additional inhibitors of the sirtuin (or SIRT) 1 and SIRT2 histone/protein deacetylases and, after treatment with NIC, evaluated changes in the acetylation of SIRT1/2 targets. RESULTS: NIC increased ploidy under diverse culture conditions and did not alter Mk ultrastructure; 6.25 mM NIC increased NAD(+) levels fivefold. Quinolinic acid increased NAD(+) similar to that for 1 mM NIC, but yielded a much smaller ploidy increase. Similar increases in Mk ploidy were obtained using NIC or the SIRT1/2 inhibitor cambinol, while the SIRT2 inhibitor AGK2 moderately increased ploidy. SIRT1/2 inhibition in cells treated with NIC was evidenced by increased acetylation of nucleosomes and p53. Greater p53 acetylation with NIC was associated with increased binding of p53 to its consensus DNA binding sequence. CONCLUSION: NIC greatly increases Mk ploidy under a wide range of conditions without altering Mk morphology. Inhibition of SIRT1 and/or SIRT2 is primarily responsible for NIC effects on Mk maturation.


Subject(s)
Aneugens/pharmacology , Megakaryocytes/drug effects , NAD/physiology , Naphthalenes/pharmacology , Niacinamide/pharmacology , Polyploidy , Pyrimidinones/pharmacology , Sirtuin 1/antagonists & inhibitors , Acetylation/drug effects , Apoptosis/drug effects , Cell Culture Techniques/methods , Cells, Cultured/drug effects , Cells, Cultured/metabolism , Cells, Cultured/ultrastructure , Consensus Sequence , Cytokines/pharmacology , DNA/metabolism , Humans , Megakaryocytes/metabolism , Megakaryocytes/ultrastructure , Nucleosomes/drug effects , Nucleosomes/metabolism , Protein Binding , Protein Processing, Post-Translational/drug effects , Sirtuin 1/physiology , Sirtuin 2/antagonists & inhibitors , Sirtuin 2/physiology , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL