Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
PLoS Negl Trop Dis ; 17(7): e0011392, 2023 07.
Article in English | MEDLINE | ID: mdl-37428804

ABSTRACT

BACKGROUND: The parasitic filariae responsible for onchocerciasis and lymphatic filariasis are host to an endosymbiotic bacterium, Wolbachia, which is essential to the fertility and development of the parasites. We performed a Phase-I pharmacokinetic, safety and food-effect study on single and multiple ascending doses of flubentylosin (ABBV-4083), a macrolide antibacterial with activity against Wolbachia, intended to sterilize and eliminate the parasites. METHODS: Seventy-eight healthy adults were exposed to flubentylosin; 36 were exposed to single ascending 40, 100, 200, 400 or 1000 mg doses; 12 received 1000 mg in the food-effect part; and 30 received multiple ascending daily doses of 100 mg for 7 days, 200 mg for 7 or 14 days, or 400 mg for 7 or 14 days. Twenty-two subjects received placebo. RESULTS: Maximum concentrations (Cmax) of flubentylosin were reached after 1-2 hours, with a half-life < 4 hours at doses ≤ 400 mg. Cmax and AUC increased in a more than dose-proportional manner, with similar exposure after multiple dose administration. The most frequently reported adverse events were nausea (8/78, 10%) and headache (6/78, 8%). Two subjects given a single dose of flubentylosin 1000 mg in the food-effect part experienced reversible asymptomatic ALT and AST elevations at Grade 2 or Grade 4, with no elevation in bilirubin, deemed related to study drug. The effect of food on exposure parameters was minimal. No treatment-related serious adverse events were reported. DISCUSSION: Flubentylosin 400 mg for 14 days was the maximum tolerated dose in this first-in-human, Phase-I study in healthy adults. Based on preclinical pharmacokinetic/pharmacodynamic modeling, flubentylosin 400 mg once daily for 7 or 14 days is expected to be an effective dose. A Phase-II, proof-of-concept study with flubentylosin using these regimens is currently ongoing in patients with onchocerciasis in Africa.


Subject(s)
Onchocerciasis , Wolbachia , Adult , Humans , Tylosin , Double-Blind Method , Anti-Bacterial Agents/pharmacokinetics , Macrolides , Area Under Curve , Dose-Response Relationship, Drug , Administration, Oral
2.
Antimicrob Agents Chemother ; 67(4): e0142522, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36920244

ABSTRACT

Recent advances on the development of bumped kinase inhibitors for treatment of cryptosporidiosis have focused on the 5-aminopyrazole-4-carboxamide scaffold, due to analogs that have less hERG inhibition, superior efficacy, and strong in vitro safety profiles. Three compounds, BKI-1770, -1841, and -1708, showed strong efficacy in C. parvum infected mice. Both BKI-1770 and BKI-1841 had efficacy in the C. parvum newborn calf model, reducing diarrhea and oocyst excretion. However, both compounds caused hyperflexion of the limbs seen as dropped pasterns. Toxicity experiments in rats and calves dosed with BKI-1770 showed enlargement of the epiphyseal growth plate at doses only slightly higher than the efficacious dose. Mice were used as a screen to check for bone toxicity, by changes to the tibia epiphyseal growth plate, or neurological causes, by use of a locomotor activity box. These results showed neurological effects from both BKI-1770 and BKI-1841 and bone toxicity in mice from BKI-1770, indicating one or both effects may be contributing to toxicity. However, BKI-1708 remains a viable treatment candidate for further evaluation as it showed no signs of bone toxicity or neurological effects in mice.


Subject(s)
Antineoplastic Agents , Antiprotozoal Agents , Cryptosporidiosis , Cryptosporidium parvum , Animals , Cattle , Mice , Rats , Cryptosporidiosis/drug therapy , Antiprotozoal Agents/pharmacology , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Oocysts
3.
Sci Rep ; 12(1): 14879, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050506

ABSTRACT

We performed a high-throughput phenotypic whole cell screen of Mycobacterium tuberculosis against a diverse chemical library of approximately 100,000 compounds from the AbbVie corporate collection and identified 24 chemotypes with anti-tubercular activity. We selected two series for further exploration and conducted structure-activity relationship studies with new analogs for the 4-phenyl piperidines (4PP) and phenylcyclobutane carboxamides (PCB). Strains with mutations in MmpL3 demonstrated resistance to both compound series. We isolated resistant mutants for the two series and found mutations in MmpL3. These data suggest that MmpL3 is the target, or mechanism of resistance for both series.


Subject(s)
Mycobacterium tuberculosis , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , High-Throughput Screening Assays , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests , Mycobacterium tuberculosis/metabolism
4.
PLoS Negl Trop Dis ; 16(6): e0010474, 2022 06.
Article in English | MEDLINE | ID: mdl-35671324

ABSTRACT

The development of new drugs targeting adult-stage lymphatic filarial nematodes is hindered by the lack of a robust long-term in vitro culture model. Testing potential direct-acting and anti-Wolbachia therapeutic candidates against adult lymphatic filariae in vitro requires their propagation via chronic infection of gerbils. We evaluated Brugia malayi parasite burden data from male Mongolian gerbils compared with two immune-deficient mouse strains highly susceptible to B. malayi: CB.17 Severe-Combined Immmuno-Deficient (SCID) and interleukin-4 receptor alpha, interleukin-5 double knockout (IL-4Rα-/-IL-5-/-) mice. Adult worms generated in IL-4Rα-/-IL-5-/- mice were tested with different feeder cells (human embryonic kidney cells, human adult dermal lymphatic endothelial cells and human THP-1 monocyte differentiated macrophages) and comparative cell-free conditions to optimise and validate a long-term in vitro culture system. Cultured parasites were compared against those isolated from mice using motility scoring, metabolic viability assay (MTT), ex vivo microfilariae release assay and Wolbachia content by qPCR. A selected culture system was validated as a drug screen using reference anti-Wolbachia (doxycycline, ABBV-4083 / flubentylosin) or direct-acting compounds (flubendazole, suramin). BALB/c IL-4Rα-/-IL-5-/- or CB.17 SCID mice were superior to Mongolian gerbils in generating adult worms and supporting in vivo persistence for periods of up to 52 weeks. Adult females retrieved from BALB/c IL-4Rα-/-IL-5-/- mice could be cultured for up to 21 days in the presence of a lymphatic endothelial cell co-culture system with comparable motility, metabolic activity and Wolbachia titres to those maintained in vivo. Drug studies confirmed significant Wolbachia depletions or direct macrofilaricidal activities could be discerned when female B. malayi were cultured for 14 days. We therefore demonstrate a novel methodology to generate adult B. malayi in vivo and accurately evaluate drug efficacy ex vivo which may be adopted for drug screening with the dual benefit of reducing overall animal use and improving anti-filarial drug development.


Subject(s)
Brugia malayi , Wolbachia , Animals , Coculture Techniques , Disease Models, Animal , Endothelial Cells , Endothelium, Lymphatic , Female , Interleukin-5 , Male , Mice , Mice, Inbred BALB C
6.
ACS Infect Dis ; 7(5): 1200-1207, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33565854

ABSTRACT

Bumped kinase inhibitors (BKIs) that target Cryptosporidium parvum calcium-dependent protein kinase 1 have been well established as potential drug candidates against cryptosporidiosis. Recently, BKI-1649, with a 7H-pyrrolo[2,3-d]pyrimidin-4-amine, or "pyrrolopyrimidine", central scaffold, has shown improved efficacy in mouse models of Cryptosporidium at substantially reduced doses compared to previously explored analogs of the pyrazolopyrimidine scaffold. Here, two pyrrolopyrimidines with varied substituent groups, BKI-1812 and BKI-1814, were explored in several in vitro and in vivo models and show improvements in potency over the previously utilized pyrazolopyrimidine bumped kinase inhibitors while maintaining equivalent results in other key properties, such as toxicity and efficacy, with their pyrazolopyrimidine isosteric counterparts.


Subject(s)
Antiprotozoal Agents , Cryptosporidiosis , Cryptosporidium , Animals , Cryptosporidiosis/drug therapy , Mice , Protein Kinase Inhibitors/pharmacology , Pyrimidines , Pyrroles
7.
ACS Omega ; 6(3): 2284-2311, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33521468

ABSTRACT

With the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis, there is a pressing need for new oral drugs with novel mechanisms of action. A number of scaffolds with potent anti-tubercular in vitro activity have been identified from phenotypic screening that appear to target MmpL3. However, the scaffolds are typically lipophilic, which facilitates partitioning into hydrophobic membranes, and several contain basic amine groups. Highly lipophilic basic amines are typically cytotoxic against mammalian cell lines and have associated off-target risks, such as inhibition of human ether-à-go-go related gene (hERG) and IKr potassium current modulation. The spirocycle compound 3 was reported to target MmpL3 and displayed promising efficacy in a murine model of acute tuberculosis (TB) infection. However, this highly lipophilic monobasic amine was cytotoxic and inhibited the hERG ion channel. Herein, the related spirocycles (1-2) are described, which were identified following phenotypic screening of the Eli Lilly corporate library against M. tuberculosis. The novel N-alkylated pyrazole portion offered improved physicochemical properties, and optimization led to identification of a zwitterion series, exemplified by lead 29, with decreased HepG2 cytotoxicity as well as limited hERG ion channel inhibition. Strains with mutations in MmpL3 were resistant to 29, and under replicating conditions, 29 demonstrated bactericidal activity against M. tuberculosis. Unfortunately, compound 29 had no efficacy in an acute model of TB infection; this was most likely due to the in vivo exposure remaining above the minimal inhibitory concentration for only a limited time.

8.
ACS Med Chem Lett ; 11(6): 1094-1100, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32550987

ABSTRACT

Tropical diseases that disproportionally affect the world's poorest people have traditionally been neglected from research efforts toward the discovery and development of new and effective therapies. Over the past two decades, major global health funders have made efforts to bring together various research institutions to work together in these disease areas offering little or no commercial return. This work describes the genesis and growth of an informal program devoted to contributing to new therapies for neglected tropical diseases within the environment of a major biopharmaceutical company (AbbVie).

9.
Int J Parasitol ; 50(5): 413-422, 2020 05.
Article in English | MEDLINE | ID: mdl-32224121

ABSTRACT

Bumped Kinase Inhibitors, targeting Calcium-dependent Protein Kinase 1 in apicomplexan parasites with a glycine gatekeeper, are promising new therapeutics for apicomplexan diseases. Here we will review advances, as well as challenges and lessons learned regarding efficacy, safety, and pharmacology that have shaped our selection of pre-clinical candidates.


Subject(s)
Apicomplexa/drug effects , Coccidiosis/drug therapy , Protein Kinase Inhibitors , Animals , Apicomplexa/metabolism , Cryptosporidiosis/drug therapy , Cryptosporidium/drug effects , Cryptosporidium/metabolism , Humans , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinases/drug effects , Protein Kinases/metabolism , Toxoplasma/drug effects , Toxoplasma/metabolism , Toxoplasmosis/drug therapy
10.
PLoS Negl Trop Dis ; 13(8): e0007636, 2019 08.
Article in English | MEDLINE | ID: mdl-31381563

ABSTRACT

Depletion of Wolbachia endosymbionts of human pathogenic filariae using 4-6 weeks of doxycycline treatment can lead to permanent sterilization and adult filarial death. We investigated the anti-Wolbachia drug candidate ABBV-4083 in the Litomosoides sigmodontis rodent model to determine Wolbachia depletion kinetics with different regimens. Wolbachia reduction occurred in mice as early as 3 days after the initiation of ABBV-4083 treatment and continued throughout a 10-day treatment period. Importantly, Wolbachia levels continued to decline after a 5-day-treatment from 91.5% to 99.9% during a 3-week washout period. In jirds, two weeks of ABBV-4083 treatment (100mg/kg once-per-day) caused a >99.9% Wolbachia depletion in female adult worms, and the kinetics of Wolbachia depletion were recapitulated in peripheral blood microfilariae. Similar to Wolbachia depletion, inhibition of embryogenesis was time-dependent in ABBV-4083-treated jirds, leading to a complete lack of late embryonic stages (stretched microfilariae) and lack of peripheral microfilariae in 5/6 ABBV-4083-treated jirds by 14 weeks after treatment. Twice daily treatment in comparison to once daily treatment with ABBV-4083 did not significantly improve Wolbachia depletion. Moreover, up to 4 nonconsecutive daily treatments within a 14-dose regimen did not significantly erode Wolbachia depletion. Within the limitations of an animal model that does not fully recapitulate human filarial disease, our studies suggest that Wolbachia depletion should be assessed clinically no earlier than 3-4 weeks after the end of treatment, and that Wolbachia depletion in microfilariae may be a viable surrogate marker for the depletion within adult worms. Furthermore, strict daily adherence to the dosing regimen with anti-Wolbachia candidates may not be required, provided that the full regimen is subsequently completed.


Subject(s)
Anti-Bacterial Agents/pharmacology , Filarioidea/microbiology , Microfilariae/microbiology , Wolbachia/drug effects , Wolbachia/physiology , Animals , Doxycycline/pharmacology , Female , Filariasis , Filarioidea/drug effects , Gerbillinae , Kinetics , Mice , Mice, Inbred BALB C , Microfilariae/drug effects , Microfilariae/embryology , Models, Animal
11.
Sci Transl Med ; 11(483)2019 03 13.
Article in English | MEDLINE | ID: mdl-30867321

ABSTRACT

There is an urgent global need for a safe macrofilaricide drug to accelerate elimination of the neglected tropical diseases onchocerciasis and lymphatic filariasis. From an anti-infective compound library, the macrolide veterinary antibiotic, tylosin A, was identified as a hit against Wolbachia This bacterial endosymbiont is required for filarial worm viability and fertility and is a validated target for macrofilaricidal drugs. Medicinal chemistry was undertaken to develop tylosin A analogs with improved oral bioavailability. Two analogs, A-1535469 and A-1574083, were selected. Their efficacy was tested against the gold-standard second-generation tetracycline antibiotics, doxycycline and minocycline, in mouse and gerbil infection models of lymphatic filariasis (Brugia malayi and Litomosoides sigmodontis) and onchocerciasis (Onchocerca ochengi). A 1- or 2-week course of oral A-1535469 or A-1574083 provided >90% Wolbachia depletion from nematodes in infected animals, resulting in a block in embryogenesis and depletion of microfilarial worm loads. The two analogs delivered comparative or superior efficacy compared to a 3- to 4-week course of doxycycline or minocycline. A-1574083 (now called ABBV-4083) was selected for further preclinical testing. Cardiovascular studies in dogs and toxicology studies in rats and dogs revealed no adverse effects at doses (50 mg/kg) that achieved plasma concentrations >10-fold above the efficacious concentration. A-1574083 (ABBV-4083) shows potential as an anti-Wolbachia macrolide with an efficacy, pharmacology, and safety profile that is compatible with a short-term oral drug course for treating lymphatic filariasis and onchocerciasis.


Subject(s)
Elephantiasis, Filarial/drug therapy , Elephantiasis, Filarial/microbiology , Macrolides/administration & dosage , Macrolides/therapeutic use , Onchocerciasis/drug therapy , Onchocerciasis/microbiology , Wolbachia/physiology , Administration, Oral , Animals , Disease Models, Animal , Elephantiasis, Filarial/blood , Female , Macrolides/adverse effects , Male , Mice, Inbred BALB C , Mice, SCID , Onchocerciasis/blood , Treatment Outcome , Tylosin/blood , Tylosin/chemical synthesis , Tylosin/chemistry , Tylosin/therapeutic use
12.
PLoS Negl Trop Dis ; 13(2): e0007159, 2019 02.
Article in English | MEDLINE | ID: mdl-30818326

ABSTRACT

There is a significant need for improved treatments for onchocerciasis and lymphatic filariasis, diseases caused by filarial worm infection. In particular, an agent able to selectively kill adult worms (macrofilaricide) would be expected to substantially augment the benefits of mass drug administration (MDA) with current microfilaricides, and to provide a solution to treatment of onchocerciasis / loiasis co-infection, where MDA is restricted. We have identified a novel macrofilaricidal agent, Tylosin A (TylA), which acts by targeting the worm-symbiont Wolbachia bacterium. Chemical modification of TylA leads to improvements in anti-Wolbachia activity and oral pharmacokinetic properties; an optimized analog (ABBV-4083) has been selected for clinical evaluation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Discovery , Filaricides/pharmacology , Tylosin/analogs & derivatives , Tylosin/pharmacology , Wolbachia/drug effects , Animals , Anti-Bacterial Agents/pharmacokinetics , Elephantiasis, Filarial/drug therapy , Female , Filaricides/pharmacokinetics , Filarioidea/drug effects , Filarioidea/microbiology , Gerbillinae , Mice , Mice, Inbred BALB C , Onchocerciasis/drug therapy , Symbiosis/drug effects
13.
J Med Chem ; 61(12): 5138-5153, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29852069

ABSTRACT

The emergence of drug-resistant HIV from a widespread antiviral chemotherapy targeting HIV protease in the past decades is unavoidable and provides a challenge to develop alternative inhibitors. We synthesized a series of allophenylnorstatine-based peptidomimetics with various P3, P2, and P2́ moieties. The derivatives with P2 tetrahydrofuranylglycine (Thfg) were found to be potent against wild type HIV-1 protease and the virus, leading to a highly potent compound 21f (KNI-1657) against lopinavir/ritonavir- or darunavir-resistant strains. Co-crystal structures of 21f and the wild-type protease revealed numerous key hydrogen bonding interactions with Thfg. These results suggest that the strategy to design allophenylnorstatine-based peptidomimetics combined with Thfg residue would be promising for generating candidates to overcome multidrug resistance.


Subject(s)
Drug Resistance, Viral/drug effects , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , HIV-1/drug effects , Peptidomimetics/pharmacology , Crystallography, X-Ray , Darunavir/pharmacology , Glycine/chemistry , HIV Protease/chemistry , HIV Protease/metabolism , Humans , Lopinavir/pharmacology , Peptidomimetics/chemistry , Phenylbutyrates/chemistry , Serum/metabolism , Structure-Activity Relationship
14.
Article in English | MEDLINE | ID: mdl-29084747

ABSTRACT

Glecaprevir (formerly ABT-493) is a novel hepatitis C virus (HCV) NS3/4A protease inhibitor (PI) with pangenotypic activity. It inhibited the enzymatic activity of purified NS3/4A proteases from HCV genotypes 1 to 6 in vitro (half-maximal [50%] inhibitory concentration = 3.5 to 11.3 nM) and the replication of stable HCV subgenomic replicons containing proteases from genotypes 1 to 6 (50% effective concentration [EC50] = 0.21 to 4.6 nM). Glecaprevir had a median EC50 of 0.30 nM (range, 0.05 to 3.8 nM) for HCV replicons containing proteases from 40 samples from patients infected with HCV genotypes 1 to 5. Importantly, glecaprevir was active against the protease from genotype 3, the most-difficult-to-treat HCV genotype, in both enzymatic and replicon assays demonstrating comparable activity against the other HCV genotypes. In drug-resistant colony selection studies, glecaprevir generally selected substitutions at NS3 amino acid position A156 in replicons containing proteases from genotypes 1a, 1b, 2a, 2b, 3a, and 4a and substitutions at position D/Q168 in replicons containing proteases from genotypes 3a, 5a, and 6a. Although the substitutions A156T and A156V in NS3 of genotype 1 reduced susceptibility to glecaprevir, replicons with these substitutions demonstrated a low replication efficiency in vitro Glecaprevir is active against HCV with most of the common NS3 amino acid substitutions that are associated with reduced susceptibility to other currently approved HCV PIs, including those at positions 155 and 168. Combination of glecaprevir with HCV inhibitors with other mechanisms of action resulted in additive or synergistic antiviral activity. In summary, glecaprevir is a next-generation HCV PI with potent pangenotypic activity and a high barrier to the development of resistance.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral/drug effects , Hepacivirus/drug effects , Protease Inhibitors/pharmacology , Quinoxalines/pharmacology , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acid Substitution , Aminoisobutyric Acids , Anti-HIV Agents/pharmacology , Cyclopropanes , Drug Synergism , Genotype , HIV-1/drug effects , Hepacivirus/genetics , Humans , Lactams, Macrocyclic , Leucine/analogs & derivatives , Proline/analogs & derivatives , Replicon/drug effects , Viral Nonstructural Proteins/genetics , Virus Replication/drug effects
15.
Int J Parasitol ; 47(12): 753-763, 2017 10.
Article in English | MEDLINE | ID: mdl-28899690

ABSTRACT

Improvements have been made to the safety and efficacy of bumped kinase inhibitors, and they are advancing toward human and animal use for treatment of cryptosporidiosis. As the understanding of bumped kinase inhibitor pharmacodynamics for cryptosporidiosis therapy has increased, it has become clear that better compounds for efficacy do not necessarily require substantial systemic exposure. We now have a bumped kinase inhibitor with reduced systemic exposure, acceptable safety parameters, and efficacy in both the mouse and newborn calf models of cryptosporidiosis. Potential cardiotoxicity is the limiting safety parameter to monitor for this bumped kinase inhibitor. This compound is a promising pre-clinical lead for cryptosporidiosis therapy in animals and humans.


Subject(s)
Cryptosporidiosis/drug therapy , Cryptosporidium parvum/drug effects , Protein Kinase Inhibitors/therapeutic use , Administration, Oral , Animals , Animals, Newborn , Cattle , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Heart/drug effects , Humans , Inhibitory Concentration 50 , Interferon-gamma/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Mutagenicity Tests , Pregnancy , Protein Binding , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/toxicity , Safety
16.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 3): 116-122, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28291746

ABSTRACT

The rapid spread of the recent Zika virus (ZIKV) epidemic across various countries in the American continent poses a major health hazard for the unborn fetuses of pregnant women. To date, there is no effective medical intervention. The nonstructural protein 5 of Zika virus (ZIKV-NS5) is critical for ZIKV replication through the 5'-RNA capping and RNA polymerase activities present in its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent RNA polymerase (RdRp) domains, respectively. The crystal structure of the full-length ZIKV-NS5 protein has been determined at 3.05 Šresolution from a crystal belonging to space group P21212 and containing two protein molecules in the asymmetric unit. The structure is similar to that reported for the NS5 protein from Japanese encephalitis virus and suggests opportunities for structure-based drug design targeting either its MTase or RdRp domain.


Subject(s)
Encephalitis Virus, Japanese/chemistry , Viral Nonstructural Proteins/chemistry , Zika Virus/chemistry , Zinc/chemistry , Amino Acid Motifs , Binding Sites , Cations, Divalent , Cloning, Molecular , Crystallography, X-Ray , Encephalitis Virus, Japanese/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Models, Molecular , Plasmids/chemistry , Plasmids/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structural Homology, Protein , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Zika Virus/metabolism , Zinc/metabolism
17.
ACS Infect Dis ; 3(1): 18-33, 2017 01 13.
Article in English | MEDLINE | ID: mdl-27704782

ABSTRACT

A potent, noncytotoxic indazole sulfonamide was identified by high-throughput screening of >100,000 synthetic compounds for activity against Mycobacterium tuberculosis (Mtb). This noncytotoxic compound did not directly inhibit cell wall biogenesis but triggered a slow lysis of Mtb cells as measured by release of intracellular green fluorescent protein (GFP). Isolation of resistant mutants followed by whole-genome sequencing showed an unusual gene amplification of a 40 gene region spanning from Rv3371 to Rv3411c and in one case a potential promoter mutation upstream of guaB2 (Rv3411c) encoding inosine monophosphate dehydrogenase (IMPDH). Subsequent biochemical validation confirmed direct inhibition of IMPDH by an uncompetitive mode of inhibition, and growth inhibition could be rescued by supplementation with guanine, a bypass mechanism for the IMPDH pathway. Beads containing immobilized indazole sulfonamides specifically interacted with IMPDH in cell lysates. X-ray crystallography of the IMPDH-IMP-inhibitor complex revealed that the primary interactions of these compounds with IMPDH were direct pi-pi interactions with the IMP substrate. Advanced lead compounds in this series with acceptable pharmacokinetic properties failed to show efficacy in acute or chronic murine models of tuberculosis (TB). Time-kill experiments in vitro suggest that sustained exposure to drug concentrations above the minimum inhibitory concentration (MIC) for 24 h were required for a cidal effect, levels that have been difficult to achieve in vivo. Direct measurement of guanine levels in resected lung tissue from tuberculosis-infected animals and patients revealed 0.5-2 mM concentrations in caseum and normal lung tissue. The high lesional levels of guanine and the slow lytic, growth-rate-dependent effect of IMPDH inhibition pose challenges to developing drugs against this target for use in treating TB.


Subject(s)
Antitubercular Agents/pharmacology , IMP Dehydrogenase/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Sulfonamides/pharmacology , Animals , Drug Design , Drug Discovery , Drug Resistance, Bacterial , Gene Expression Regulation, Bacterial/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Humans , Mice , Mice, Inbred C57BL , Molecular Structure , Mutation , Protein Conformation , Rabbits , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics , Tuberculosis/drug therapy
18.
J Med Chem ; 59(13): 6531-46, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27309760

ABSTRACT

New therapies are needed for the treatment of toxoplasmosis, which is a disease caused by the protozoan parasite Toxoplasma gondii. To this end, we previously developed a potent and selective inhibitor (compound 1) of Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) that possesses antitoxoplasmosis activity in vitro and in vivo. Unfortunately, 1 has potent human ether-a-go-go-related gene (hERG) inhibitory activity, associated with long Q-T syndrome, and consequently presents a cardiotoxicity risk. Here, we describe the identification of an optimized TgCDPK1 inhibitor 32, which does not have a hERG liability and possesses a favorable pharmacokinetic profile in small and large animals. 32 is CNS-penetrant and highly effective in acute and latent mouse models of T. gondii infection, significantly reducing the amount of parasite in the brain, spleen, and peritoneal fluid and reducing brain cysts by >85%. These properties make 32 a promising lead for the development of a new antitoxoplasmosis therapy.


Subject(s)
Antiprotozoal Agents/pharmacology , Central Nervous System/drug effects , Drug Design , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Toxoplasma/drug effects , Toxoplasmosis/drug therapy , Administration, Oral , Animals , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/chemistry , Disease Models, Animal , Dogs , Dose-Response Relationship, Drug , Ether-A-Go-Go Potassium Channels/metabolism , Female , Haplorhini , Mice , Mice, Inbred BALB C , Molecular Structure , Parasitic Sensitivity Tests , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Toxoplasma/enzymology , Toxoplasmosis/metabolism
19.
ACS Med Chem Lett ; 6(12): 1184-1189, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26693272

ABSTRACT

We previously discovered compounds based on a 5-aminopyrazole-4-carboxamide scaffold to be potent and selective inhibitors of CDPK1 from T. gondii. The current work, through structure-activity relationship studies, led to the discovery of compounds (34 and 35) with improved characteristics over the starting inhibitor 1 in terms of solubility, plasma exposure after oral administration in mice, or efficacy on parasite growth inhibition. Compounds 34 and 35 were further demonstrated to be more effective than 1 in a mouse infection model and markedly reduced the amount of T. gondii in the brain, spleen, and peritoneal fluid, and 35 given at 20 mg/kg eliminated T. gondii from the peritoneal fluid.

20.
Antimicrob Agents Chemother ; 59(2): 988-97, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25451053

ABSTRACT

The development of direct-acting antiviral agents is a promising therapeutic advance in the treatment of hepatitis C virus (HCV) infection. However, rapid emergence of drug resistance can limit efficacy and lead to cross-resistance among members of the same drug class. ABT-450 is an efficacious inhibitor of HCV NS3/4A protease, with 50% effective concentration values of 1.0, 0.21, 5.3, 19, 0.09, and 0.69 nM against stable HCV replicons with NS3 protease from genotypes 1a, 1b, 2a, 3a, 4a, and 6a, respectively. In vitro, the most common amino acid variants selected by ABT-450 in genotype 1 were located in NS3 at positions 155, 156, and 168, with the D168Y variant conferring the highest level of resistance to ABT-450 in both genotype 1a and 1b replicons (219- and 337-fold, respectively). In a 3-day monotherapy study with HCV genotype 1-infected patients, ABT-450 was coadministered with ritonavir, a cytochrome P450 3A4 inhibitor shown previously to markedly increase peak, trough, and overall drug exposures of ABT-450. A mean maximum HCV RNA decline of 4.02 log10 was observed at the end of the 3-day dosing period across all doses. The most common variants selected in these patients were R155K and D168V in genotype 1a and D168V in genotype 1b. However, selection of resistant variants was significantly reduced at the highest ABT-450 dose compared to lower doses. These findings were informative for the subsequent evaluation of ABT-450 in combination with additional drug classes in clinical trials in HCV-infected patients. (Study M11-602 is registered at ClinicalTrials.gov under registration no. NCT01074008.).


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral , Hepacivirus/drug effects , Macrocyclic Compounds/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Cyclopropanes , Hepatitis C/drug therapy , Humans , Lactams, Macrocyclic , Proline/analogs & derivatives , Sulfonamides
SELECTION OF CITATIONS
SEARCH DETAIL