Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Neurochem ; 165(1): 76-94, 2023 04.
Article in English | MEDLINE | ID: mdl-36583241

ABSTRACT

Ceruloplasmin (Cp) is a multicopper oxidase with ferroxidase properties being of importance to the mobilisation and export of iron from cells and its ability to bind copper. In ageing humans, Cp deficiency is known to result in aceruloplasminemia, which among other is characterised by neurological symptoms. To obtain novel information about the functions of Cp in the central nervous system (CNS) we compared the brain proteome in forebrains from asymptomatic 4-6-month-old Cp-deficient (B6N(Cg)-Cptm1b(KOMP)Wtsi /J) and wild-type mice. Of more than 5600 quantified proteins, 23 proteins, were regulated, whereas more than 1200 proteins had regulated post-translational modifications (PTMs). The genes of the regulated proteins, glycoproteins and phosphoproteins appeared mostly to be located to neurons and oligodendrocyte precursor cells. Cp deficiency especially affected the function of proteins involved in the extension of neuronal projections, synaptic signalling and cellular mRNA processing and affected the expression of proteins involved in neurodegenerative disease and diabetes. Iron concentration and transferrin saturation were reduced in the blood of even younger, 3- to 5-month-old, Cp-deficient mice. Iron act as cofactor in many enzymatic processes and reactions. Changes in iron availability and oxidation as consequence of Cp deficiency could therefore affect the synthesis of proteins and lipids. This proteomic characterisation is to our knowledge the first to document the changes taking place in the CNS-proteome and its phosphorylation and glycosylation state in Cp-deficient mice.


Subject(s)
Ceruloplasmin , Neurodegenerative Diseases , Animals , Humans , Mice , Ceruloplasmin/genetics , Ceruloplasmin/metabolism , Iron/metabolism , Neurodegenerative Diseases/metabolism , Protein Processing, Post-Translational , Proteome/metabolism , Proteomics , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism
2.
Hypertension ; 79(11): 2530-2541, 2022 11.
Article in English | MEDLINE | ID: mdl-36082664

ABSTRACT

BACKGROUND: Angiotensin AT2-receptor signaling is atypical for a G-protein coupled receptor and incompletely understood. To obtain novel insights into AT2-receptor signaling, we mapped changes in the phosphorylation status of the entire proteome of human aortic endothelial cells in response to AT2-receptor stimulation. METHODS: Phosphorylation status of human aortic endothelial cells after stimulation with C21 (1 µM; 0, 1, 3, 5, 20 minutes) was determined utilizing time-resolved quantitative phosphoproteomics. Specific changes in protein phosphorylation and acetylation were confirmed by Western Blotting. Functional tests included resazurin assay for cell proliferation, and caspase 3/7 luminescence assay or FACS analysis of annexin V expression for apoptosis. RESULTS: AT2-receptor stimulation significantly altered the phosphorylation status of 172 proteins (46% phosphorylations, 54% dephosphorylations). Bioinformatic analysis revealed a cluster of phospho-modified proteins involved in antiproliferation and apoptosis. Among these proteins, HDAC1 (histone-deacetylase-1) was dephosphorylated at serine421/423 involving serine/threonine phosphatases. Resulting HDAC1 inhibition led to p53 acetylation and activation. AT2-receptor stimulation induced antiproliferation and apoptosis, which were absent when cells were co-incubated with the p53 inhibitor pifithrin-α, thus indicating p53-dependence of these AT2-receptor mediated functions. CONCLUSIONS: Contrary to the prevailing view that AT2-receptor signaling largely involves phosphatases, our study revealed significant involvement of kinases. HDAC1 inhibition and resulting p53 activation were identified as novel, AT2-receptor coupled signaling mechanisms. Furthermore, the study created an openly available dataset of AT2-receptor induced phospho-modified proteins, which has the potential to be the basis for further discoveries of currently unknown, AT2-receptor coupled signaling mechanisms.


Subject(s)
Histones , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Receptor, Angiotensin, Type 2/metabolism , Endothelial Cells/metabolism , Apoptosis , Phosphoric Monoester Hydrolases/metabolism , Serine , Angiotensins/metabolism , Histone Deacetylase 1/metabolism
3.
Sci Rep ; 9(1): 15758, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31673052

ABSTRACT

Despite compelling evidence that the accumulation of amyloid-beta (Aß) promotes neocortical MAPT (tau) aggregation in familial and idiopathic Alzheimer's disease (AD), murine models of cerebral amyloidosis are not considered to develop tau-associated pathology. In the present study, we show that tau can accumulate spontaneously in aged transgenic APPswe/PS1ΔE9 mice. Tau pathology is abundant around Aß deposits, and further characterized by accumulation of Gallyas and thioflavin-S-positive inclusions, which were detected in the APPswe/PS1ΔE9 brain at 18 months of age. Age-dependent increases in argyrophilia correlated positively with binding levels of the paired helical filament (PHF) tracer [18F]Flortaucipir, in all brain areas examined. Sarkosyl-insoluble PHFs were visualized by electron microscopy. Quantitative proteomics identified sequences of hyperphosphorylated and three-repeat tau in transgenic mice, along with signs of RNA missplicing, ribosomal dysregulation and disturbed energy metabolism. Tissue from the frontal gyrus of human subjects was used to validate these findings, revealing primarily quantitative differences between the tau pathology observed in AD patient vs. transgenic mouse tissue. As physiological levels of endogenous, 'wild-type' tau aggregate secondarily to Aß in APPswe/PS1ΔE9 mice, this study suggests that amyloidosis is both necessary and sufficient to drive tauopathy in experimental models of familial AD.


Subject(s)
Aging , Alzheimer Disease , Amyloid beta-Peptides , Amyloidosis , tau Proteins , Aging/genetics , Aging/metabolism , Aging/pathology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Amyloidosis/genetics , Amyloidosis/metabolism , Amyloidosis/pathology , Animals , Disease Models, Animal , Mice , Mice, Transgenic , tau Proteins/genetics , tau Proteins/metabolism
4.
Front Cell Neurosci ; 12: 397, 2018.
Article in English | MEDLINE | ID: mdl-30459560

ABSTRACT

Neuroinflammation, characterized by chronic activation of the myeloid-derived microglia, is a hallmark of Alzheimer's disease (AD). Systemic inflammation, typically resulting from infection, has been linked to the progression of AD due to exacerbation of the chronic microglial reaction. However, the mechanism and the consequences of this exacerbation are largely unknown. Here, we mimicked systemic inflammation in AD with weekly intraperitoneal (i.p.) injections of APPSWE/PS1ΔE9 transgenic mice with E. coli lipopolysaccharide (LPS) from 9 to 12 months of age, corresponding to the period with the steepest increase in amyloid pathology. We found that the repeated LPS injections ameliorated amyloid pathology in the neocortex while increasing the neuroinflammatory reaction. To elucidate mechanisms, we analyzed the proteome of the hippocampus from the same mice as well as in unique samples of CNS myeloid cells. The repeated LPS injections stimulated protein pathways of the complement system, retinoid receptor activation and oxidative stress. CNS myeloid cells from transgenic mice showed enrichment in pathways of amyloid-beta clearance and elevated levels of the lysosomal protease cathepsin Z, as well as amyloid precursor protein, apolipoprotein E and clusterin. These proteins were found elevated in the proteome of both LPS and vehicle injected transgenics, and co-localized to CD11b+ microglia in transgenic mice and in primary murine microglia. Additionally, cathepsin Z, amyloid precursor protein, and apolipoprotein E appeared associated with amyloid plaques in neocortex of AD cases. Interestingly, cathepsin Z was expressed in microglial-like cells and co-localized to CD68+ microglial lysosomes in AD cases, and it was expressed in perivascular cells in AD and control cases. Taken together, our results implicate systemic LPS administration in ameliorating amyloid pathology in early-to-mid stage disease in the APPSWE/PS1ΔE9 mouse and attract attention to the potential disease involvement of cathepsin Z expressed in CNS myeloid cells in AD.

5.
Nanotoxicology ; 12(7): 781-795, 2018 09.
Article in English | MEDLINE | ID: mdl-29996704

ABSTRACT

Although multiple studies have reported the toxicological effects and underlying mechanisms of toxicity of silver nanoparticles (AgNP) in a variety of organisms, the interactions of AgNP with environmental contaminants such as cadmium are poorly understood. We used biochemical assays and mass spectrometry-based proteomics to assess the cellular and molecular effects induced by a co-exposure of HepG2 cells to AgNP and cadmium. Cell viability and energy homeostasis were slightly affected after a 4-h exposure to AgNP, cadmium, or a combination of the two; these endpoints were substantially altered after a 24-h co-exposure to AgNP and cadmium, while exposure to one of the two contaminants led only to minor changes. Proteomics analysis followed the same trend: while a 4-h exposure induced minor protein deregulation, a 24-h exposure to a combination of AgNP and cadmium deregulated 43% of the proteome. The toxicity induced by a combined exposure to AgNP and cadmium involved (1) inactivation of Nrf2, resulting in downregulation of antioxidant defense and proteasome-related proteins, (2) metabolic adaptation and ADP/ATP imbalance, and (3) increased protein synthesis possibly to reestablish homeostasis. The adaptation strategy was not sufficient to restore ADP/ATP homeostasis and to avoid cell death.


Subject(s)
Cadmium/toxicity , Energy Metabolism/drug effects , Hepatocytes/drug effects , Metal Nanoparticles/toxicity , Proteome/drug effects , Silver/toxicity , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Antioxidants/metabolism , Cell Survival/drug effects , Hep G2 Cells , Hepatocytes/metabolism , Humans , Proteomics
6.
Radiat Environ Biophys ; 57(2): 99-113, 2018 05.
Article in English | MEDLINE | ID: mdl-29327260

ABSTRACT

Because of the increasing application of ionizing radiation in medicine, quantitative data on effects of low-dose radiation are needed to optimize radiation protection, particularly with respect to cataract development. Using mice as mammalian animal model, we applied a single dose of 0, 0.063, 0.125 and 0.5 Gy at 10 weeks of age, determined lens opacities for up to 2 years and compared it with overall survival, cytogenetic alterations and cancer development. The highest dose was significantly associated with increased body weight and reduced survival rate. Chromosomal aberrations in bone marrow cells showed a dose-dependent increase 12 months after irradiation. Pathological screening indicated a dose-dependent risk for several types of tumors. Scheimpflug imaging of the lens revealed a significant dose-dependent effect of 1% of lens opacity. Comparison of different biological end points demonstrated long-term effects of low-dose irradiation for several biological end points.


Subject(s)
Cataract/genetics , Radiation Injuries, Experimental/genetics , Animals , Cataract/etiology , Chromosome Aberrations/radiation effects , Dose-Response Relationship, Radiation , Female , Kaplan-Meier Estimate , Male , Mice , Radiation Injuries, Experimental/etiology , Radiation Protection , Risk Assessment , Telomere/radiation effects , Time Factors
7.
Nucleic Acids Res ; 45(16): 9272-9289, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28934504

ABSTRACT

Deposition of replication-independent histone variant H3.3 into chromatin is essential for many biological processes, including development and reproduction. Unlike replication-dependent H3.1/2 isoforms, H3.3 is expressed throughout the cell cycle and becomes enriched in postmitotic cells with age. However, lifelong dynamics of H3 variant replacement and the impact of this process on chromatin organization remain largely undefined. Using quantitative middle-down proteomics we demonstrate that H3.3 accumulates to near saturation levels in the chromatin of various mouse somatic tissues by late adulthood. Accumulation of H3.3 is associated with profound changes in global levels of both individual and combinatorial H3 methyl modifications. A subset of these modifications exhibit distinct relative abundances on H3 variants and remain stably enriched on H3.3 throughout the lifespan, suggesting a causal relationship between H3 variant replacement and age-dependent changes in H3 methylation. Furthermore, the H3.3 level is drastically reduced in human hepatocarcinoma cells as compared to nontumoral hepatocytes, suggesting the potential utility of the H3.3 relative abundance as a biomarker of abnormal cell proliferation activity. Overall, our study provides the first quantitative characterization of dynamic changes in H3 proteoforms throughout lifespan in mammals and suggests a role for H3 variant replacement in modulating H3 methylation landscape with age.


Subject(s)
Aging/metabolism , Histones/metabolism , Animals , Carcinoma, Hepatocellular/metabolism , Cells, Cultured , Hepatocytes/metabolism , Histone Code , Humans , Liver Neoplasms/metabolism , Lysine/metabolism , Male , Methylation , Mice, Inbred C57BL , Protein Isoforms/metabolism , Protein Processing, Post-Translational
8.
Oncotarget ; 8(36): 60223-60242, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28947966

ABSTRACT

Neuroinflammation is a hallmark of Alzheimer's disease and TNFα as the main inducer of neuroinflammation has neurodegenerative but also pro-regenerative properties, however, the dose-dependent molecular changes on signaling pathway level are not fully understood. We performed quantitative proteomics and phospho-proteomics to target this point. In HT22 cells, we found that TNFα reduced mitochondrial signaling and inhibited mTOR protein translation signaling but also led to induction of neuroprotective MAPK-CREB signaling. Stimulation of human neurons with TNFα revealed similar cellular mechanisms. Moreover, a number of synaptic plasticity-associated genes were altered in their expression profile including CREB. SiRNA-mediated knockdown of CREB in human neurons prior to TNFα stimulation led to a reduced number of protein/phospho-protein hits compared to siRNA-mediated knockdown of CREB or TNFα stimulation alone and countermeasured the reduced CREB signaling. In vivo data of TNFα knockout mice showed that learning ability did not depend on TNFα per se but that TNFα was essential for preserving the learning ability after episodes of lipopolysaccharide-induced neuroinflammation. This may be based on modulation of CREB/CREB signaling as revealed by the in vitro / in vivo data. Our data show that several molecular targets and signaling pathways induced by TNFα in neurons resemble those seen in Alzheimer's disease pathology.

9.
J Proteomics ; 161: 11-25, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28396268

ABSTRACT

Phosphorylation and glycosylation are important protein modifications in the mammalian brain acting as drivers of neural development, neurotransmission signalling and neurite elongation as well as synaptic morphology. Despite their important functional roles in the brain, only a few studies have elucidated them in neurodegenerative diseases such as Alzheimer's disease. Here, we comprehensively review Alzheimer's pathology in relation to protein phosphorylation and glycosylation on synaptic plasticity from neuroproteomics data. Moreover, we highlight several mass spectrometry-based sample processing technologies including an in-house developed TiO2-SIMAC-TiO2-based enrichment protocol to isolate and enrich phosphorylated and glycosylated peptides enabling to elucidate hopefully new early disease biomarkers.


Subject(s)
Alzheimer Disease/metabolism , Neuronal Plasticity , Protein Processing, Post-Translational , Proteomics/methods , Animals , Glycosylation , Humans , Phosphorylation
10.
Int J Radiat Biol ; 93(2): 156-164, 2017 02.
Article in English | MEDLINE | ID: mdl-27653672

ABSTRACT

PURPOSE: Ionizing radiation induces cardiovascular disease, the endothelium being the main target. The exact mechanism of the damage is unclear but the involvement of multiple signaling pathways is probable. Reversible lysine acetylation is a posttranslational protein modification that regulates activity across a broad range of signaling pathways. The aim of this study was to determine if a low radiation dose results in acetylome alteration in endothelial cells. MATERIALS AND METHODS: Human coronary artery endothelial cell line was irradiated with Cs-137 gamma-rays (0.5 Gy) and proteomics analysis was performed using enriched acetylated peptides and all peptides. Data were validated using immunoblotting, deacetylase activity assay, and RhoA activity assay. RESULTS: Nearly a hundred proteins were found to have an altered acetylation status 24 h after irradiation, primarily due to an overall decrease in acetylation. The expression of specific deacetylases was significantly increased, coinciding with an enhancement in global deacetylase activity. Proteins changed in their acetylation status belonged to several pathways including protein synthesis, cytoskeleton-related processes, protein folding and calcium signaling. The predicted changes in the RhoA/actin cytoskeleton pathway were validated by immunoassay. CONCLUSIONS: This study shows that protein acetylation is an important mediator of radiation responses in human cardiac coronary endothelial cells. Increased knowledge of the endothelial response to radiation is crucial for the development of normal tissue-sparing modalities during radiation therapy.


Subject(s)
Coronary Vessels/physiology , Coronary Vessels/radiation effects , Endothelial Cells/physiology , Endothelial Cells/radiation effects , Histone Deacetylases/biosynthesis , Proteome/biosynthesis , Acetylation/radiation effects , Cell Line , Coronary Vessels/cytology , Dose-Response Relationship, Radiation , Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Enzymologic/radiation effects , Humans , Radiation Dosage
12.
Oncotarget ; 7(44): 71817-71832, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27708245

ABSTRACT

Accruing data indicate that radiation-induced consequences resemble pathologies of neurodegenerative diseases such as Alzheimer´s. The aim of this study was to elucidate the effect on hippocampus of chronic low-dose-rate radiation exposure (1 mGy/day or 20 mGy/day) given over 300 days with cumulative doses of 0.3 Gy and 6.0 Gy, respectively. ApoE deficient mutant C57Bl/6 mouse was used as an Alzheimer´s model. Using mass spectrometry, a marked alteration in the phosphoproteome was found at both dose rates. The radiation-induced changes in the phosphoproteome were associated with the control of synaptic plasticity, calcium-dependent signalling and brain metabolism. An inhibition of CREB signalling was found at both dose rates whereas Rac1-Cofilin signalling was found activated only at the lower dose rate. Similarly, the reduction in the number of activated microglia in the molecular layer of hippocampus that paralleled with reduced levels of TNFα expression and lipid peroxidation was significant only at the lower dose rate. Adult neurogenesis, investigated by Ki67, GFAP and NeuN staining, and cell death (activated caspase-3) were not influenced at any dose or dose rate. This study shows that several molecular targets induced by chronic low-dose-rate radiation overlap with those of Alzheimer´s pathology. It may suggest that ionising radiation functions as a contributing risk factor to this neurodegenerative disease.


Subject(s)
Alzheimer Disease/etiology , Apolipoproteins E/physiology , Hippocampus/radiation effects , Proteome , Alzheimer Disease/metabolism , Animals , Cyclic AMP Response Element-Binding Protein/physiology , Disease Models, Animal , Female , Hippocampus/metabolism , Lipid Peroxidation/radiation effects , Mice , Mice, Inbred C57BL , Neurogenesis/radiation effects , Neuronal Plasticity/radiation effects , Phosphorylation , Radiation Dosage , Radiation, Ionizing , Signal Transduction
13.
BMC Bioinformatics ; 17(1): 212, 2016 May 11.
Article in English | MEDLINE | ID: mdl-27170263

ABSTRACT

BACKGROUND: The underlying molecular processes representing stress responses to low-dose ionising radiation (LDIR) in mammals are just beginning to be understood. In particular, LDIR effects on the brain and their possible association with neurodegenerative disease are currently being explored using omics technologies. RESULTS: We describe a light-weight approach for the storage, analysis and distribution of relevant LDIR omics datasets. The data integration platform, called BRIDE, contains information from the literature as well as experimental information from transcriptomics and proteomics studies. It deploys a hybrid, distributed solution using both local storage and cloud technology. CONCLUSIONS: BRIDE can act as a knowledge broker for LDIR researchers, to facilitate molecular research on the systems biology of LDIR response in mammals. Its flexible design can capture a range of experimental information for genomics, epigenomics, transcriptomics, and proteomics. The data collection is available at: .


Subject(s)
Brain/radiation effects , Radiation, Ionizing , Research , Software , Dose-Response Relationship, Radiation , Humans
14.
Oncotarget ; 7(23): 33627-48, 2016 Jun 07.
Article in English | MEDLINE | ID: mdl-27144524

ABSTRACT

The aim of this study was to elucidate the molecular signature of Alzheimer's disease-associated amyloid pathology.We used the double APPswe/PS1ΔE9 mouse, a widely used model of cerebral amyloidosis, to compare changes in proteome, including global phosphorylation and sialylated N-linked glycosylation patterns, pathway-focused transcriptome and neurological disease-associated miRNAome with age-matched controls in neocortex, hippocampus, olfactory bulb and brainstem. We report that signalling pathways related to synaptic functions associated with dendritic spine morphology, neurite outgrowth, long-term potentiation, CREB signalling and cytoskeletal dynamics were altered in 12 month old APPswe/PS1ΔE9 mice, particularly in the neocortex and olfactory bulb. This was associated with cerebral amyloidosis as well as formation of argyrophilic tangle-like structures and microglial clustering in all brain regions, except for brainstem. These responses may be epigenetically modulated by the interaction with a number of miRNAs regulating spine restructuring, Aß expression and neuroinflammation.We suggest that these changes could be associated with development of cognitive dysfunction in early disease states in patients with Alzheimer's disease.


Subject(s)
Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Neuronal Plasticity , Animals , Disease Models, Animal , Male , Mice , Mice, Transgenic , Proteomics/methods
15.
Oncotarget ; 7(19): 28040-58, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27057631

ABSTRACT

Therapeutic irradiation of pediatric and adult patients can profoundly affect adult neurogenesis, and cognitive impairment manifests as a deficit in hippocampal-dependent functions. Age plays a major role in susceptibility to radiation, and younger children are at higher risk of cognitive decay when compared to adults. Cranial irradiation affects hippocampal neurogenesis by induction of DNA damage in neural progenitors, through the disruption of the neurogenic microenvironment, and defective integration of newborn neurons into the neuronal network. Our goal here was to assess cellular and molecular alterations induced by cranial X-ray exposure to low/moderate doses (0.1 and 2 Gy) in the hippocampus of mice irradiated at the postnatal ages of day 10 or week 10, as well as the dependency of these phenomena on age at irradiation. To this aim, changes in the cellular composition of the dentate gyrus, mitochondrial functionality, proteomic profile in the hippocampus, as well as cognitive performance were evaluated by a multidisciplinary approach. Our results suggest the induction of specific alterations in hippocampal neurogenesis, microvascular density and mitochondrial functions, depending on age at irradiation. A better understanding of how irradiation impairs hippocampal neurogenesis at low and moderate doses is crucial to minimize adverse effects of therapeutic irradiation, contributing also to radiation safety regulations.


Subject(s)
Cranial Irradiation/adverse effects , Hippocampus/radiation effects , Neurogenesis/radiation effects , Age Factors , Animals , Female , Male , Maze Learning/radiation effects , Mice , Mice, Inbred C57BL
16.
Proteome Sci ; 13: 26, 2015.
Article in English | MEDLINE | ID: mdl-26578848

ABSTRACT

BACKGROUND: The harmful consequences of in utero irradiation on learning and memory have been recognised but the molecular mechanisms behind the damage are still unknown. RESULTS: Using a mass spectrometry-based approach, we investigated the long-term changes in the global cortical and hippocampal proteome 6 months after 0.1, 0.5 and 1.0 Gy in utero X-ray irradiation delivered on embryonic day 11 in male C57Bl/6 J offspring. We noted alterations in several signalling pathways involved in cognition, the transcription factor cAMP response element-binding protein (CREB) playing a central role. Immunoblotting of CREB and phosphorylated CREB (Ser133) showed an altered expression profile at all doses in the hippocampus and at 0.5 and 1.0 Gy in the cortex. The greatest reduction in the phospho-CREB level was seen at 1.0 Gy in the hippocampus. It was accompanied by enhanced expression of postsynaptic density protein 95 (PSD95), suggesting effect on synaptic plasticity in neuronal dendrites. CONCLUSIONS: As the CREB signalling pathway plays a crucial role in neuronal plasticity and long-term memory formation in the brain, the radiation-induced alterations of this pathway seen here are in good agreement with the cognitive dysfunction seen in in utero irradiated populations. These data contribute to a deeper biological understanding of molecular mechanisms behind the long-term damage induced by relatively low doses of ionising radiation during gestation.

17.
J Proteome Res ; 14(11): 4674-86, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26420666

ABSTRACT

Recent epidemiological data indicate that radiation doses as low as those used in computer tomography may result in long-term neurocognitive side effects. The aim of this study was to elucidate long-term molecular alterations related to memory formation in the brain after low and moderate doses of γ radiation. Female C57BL/6J mice were irradiated on postnatal day 10 with total body doses of 0.1, 0.5, or 2.0 Gy; the control group was sham-irradiated. The proteome analysis of hippocampus, cortex, and synaptosomes isolated from these brain regions indicated changes in ephrin-related, RhoGDI, and axonal guidance signaling. Immunoblotting and miRNA-quantification demonstrated an imbalance in the synapse morphology-related Rac1-Cofilin pathway and long-term potentiation-related cAMP response element-binding protein (CREB) signaling. Proteome profiling also showed impaired oxidative phosphorylation, especially in the synaptic mitochondria. This was accompanied by an early (4 weeks) reduction of mitochondrial respiration capacity in the hippocampus. Although the respiratory capacity was restored by 24 weeks, the number of deregulated mitochondrial complex proteins was increased at this time. All observed changes were significant at doses of 0.5 and 2.0 Gy but not at 0.1 Gy. This study strongly suggests that ionizing radiation at the neonatal state triggers persistent proteomic alterations associated with synaptic impairment.


Subject(s)
Cerebral Cortex/radiation effects , Gamma Rays/adverse effects , Hippocampus/radiation effects , Long-Term Potentiation/radiation effects , Proteome/genetics , Synaptic Transmission/radiation effects , Actin Depolymerizing Factors/genetics , Actin Depolymerizing Factors/metabolism , Animals , Animals, Newborn , Axons/metabolism , Axons/radiation effects , Axons/ultrastructure , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Ephrins/genetics , Ephrins/metabolism , Female , Hippocampus/metabolism , Hippocampus/physiopathology , Memory/drug effects , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Mitochondria/metabolism , Mitochondria/radiation effects , Neuropeptides/genetics , Neuropeptides/metabolism , Oxidative Phosphorylation/radiation effects , Proteome/metabolism , Synaptosomes/metabolism , Synaptosomes/radiation effects , Whole-Body Irradiation , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , rho-Specific Guanine Nucleotide Dissociation Inhibitors/genetics , rho-Specific Guanine Nucleotide Dissociation Inhibitors/metabolism
18.
J Radiat Res ; 56(4): 623-32, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25840449

ABSTRACT

Reversible lysine acetylation is a highly regulated post-translational protein modification that is known to regulate several signaling pathways. However, little is known about the radiation-induced changes in the acetylome. In this study, we analyzed the acute post-translational acetylation changes in primary human cardiac microvascular endothelial cells 4 h after a gamma radiation dose of 2 Gy. The acetylated peptides were enriched using anti-acetyl conjugated agarose beads. A total of 54 proteins were found to be altered in their acetylation status, 23 of which were deacetylated and 31 acetylated. Pathway analyses showed three protein categories particularly affected by radiation-induced changes in the acetylation status: the proteins involved in the translation process, the proteins of stress response, and mitochondrial proteins. The activation of the canonical and non-canonical Wnt signaling pathways affecting actin cytoskeleton signaling and cell cycle progression was predicted. The protein expression levels of two nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, sirtuin 1 and sirtuin 3, were significantly but transiently upregulated 4 but not 24 h after irradiation. The status of the p53 protein, a target of sirtuin 1, was found to be rapidly stabilized by acetylation after radiation exposure. These findings indicate that post-translational modification of proteins by acetylation and deacetylation is essentially affecting the radiation response of the endothelium.


Subject(s)
Acetylation/radiation effects , Endothelial Cells/physiology , Endothelial Cells/radiation effects , Histone Deacetylases/metabolism , Lysine/metabolism , Proteome/metabolism , Cells, Cultured , Dose-Response Relationship, Radiation , Humans , Microvessels/cytology , Microvessels/physiology , Microvessels/radiation effects , Myocardium/cytology , Radiation Dosage , Radiation, Ionizing
19.
J Proteome Res ; 14(5): 2055-64, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25807253

ABSTRACT

The increased use of radiation-based medical imaging methods such as computer tomography is a matter of concern due to potential radiation-induced adverse effects. Efficient protection against such detrimental effects has not been possible due to inadequate understanding of radiation-induced alterations in signaling pathways. The aim of this study was to elucidate the molecular mechanisms behind learning and memory deficits after acute low and moderate doses of ionizing radiation. Female C57BL/6J mice were irradiated on postnatal day 10 (PND10) with gamma doses of 0.1 or 0.5 Gy. This was followed by evaluation of the cellular proteome, pathway-focused transcriptome, and neurological development/disease-focused miRNAome of hippocampus and cortex 24 h postirradiation. Our analysis showed that signaling pathways related to mitochondrial and synaptic functions were changed by acute irradiation. This may lead to reduced mitochondrial function paralleled by enhanced number of dendritic spines and neurite outgrowth due to elevated long-term potentiation, triggered by increased phosphorylated CREB. This was predominately observed in the cortex at 0.1 and 0.5 Gy and in the hippocampus only at 0.5 Gy. Moreover, a radiation-induced increase in the expression of several neural miRNAs associated with synaptic plasticity was found. The early changes in signaling pathways related to memory formation may be associated with the acute neurocognitive side effects in patients after brain radiotherapy but might also contribute to late radiation-induced cognitive injury.


Subject(s)
Cerebral Cortex/radiation effects , Hippocampus/radiation effects , Long-Term Potentiation/radiation effects , Memory/radiation effects , Mitochondria/radiation effects , Synapses/radiation effects , Animals , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Cerebral Cortex/physiology , Dose-Response Relationship, Radiation , Female , Gamma Rays , Gene Expression , Hippocampus/physiology , Humans , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Phosphorylation , Proteome/metabolism , Signal Transduction/radiation effects , Synapses/physiology , Transcriptome
20.
J Proteome Res ; 14(1): 366-73, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25299163

ABSTRACT

Tens of thousands of people are being exposed daily to environmental low-dose gamma radiation. Epidemiological data indicate that such low radiation doses may negatively affect liver function and result in the development of liver disease. However, the biological mechanisms behind these adverse effects are unknown. The aim of this study was to investigate radiation-induced damage in the liver after low radiation doses. Neonatal male NMRI mice were exposed to total body irradiation on postnatal day 10 using acute single doses ranging from 0.02 to 1.0 Gy. Early (1 day) and late (7 months) changes in the liver proteome were tracked using isotope-coded protein label technology and quantitative mass spectrometry. Our data indicate that low and moderate radiation doses induce an immediate inhibition of the glycolysis pathway and pyruvate dehydrogenase availability in the liver. Furthermore, they lead to significant long-term alterations in lipid metabolism and increased liver inflammation accompanying inactivation of the transcription factor peroxisome proliferator-activated receptor alpha. This study contributes to the understanding of the potential risk of liver damage in populations environmentally exposed to ionizing radiation.


Subject(s)
Animals, Newborn/metabolism , Liver/metabolism , Proteome/metabolism , Proteome/radiation effects , Whole-Body Irradiation/adverse effects , Animals , Computational Biology , Dose-Response Relationship, Radiation , Immunoblotting , Lipid Metabolism/radiation effects , Liver/radiation effects , Male , Mice , Proteomics , Radiation, Ionizing , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...