Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Parasitol Int ; 101: 102891, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38537686

ABSTRACT

Malaria remains a significant global public health concern, with a recent increase in the number of zoonotic malaria cases in Southeast Asian countries. However, limited reports on the vector for zoonotic malaria exist owing to difficulties in detecting parasite DNA in Anopheles mosquito vectors. Herein, we demonstrate for the first time that several Anopheles mosquitoes contain simian malaria parasite DNA using droplet digital PCR (ddPCR), a highly sensitive PCR method. An entomological survey was conducted to identify simian malaria vector species at Phra Phothisat Temple (PPT), central Thailand, recognized for a high prevalence of simian malaria in wild cynomolgus macaques. A total of 152 mosquitoes from six anopheline species were collected and first analyzed by a standard 18S rRNA nested-PCR analysis for malaria parasite which yielded negative results in all collected mosquitoes. Later, ddPCR was used and could detect simian malaria parasite DNA, i.e. Plasmodium cynomolgi, in 25 collected mosquitoes. And this is the first report of simian malaria parasite DNA detection in Anopheles sawadwongporni. This finding proves that ddPCR is a powerful tool for detecting simian malarial parasite DNA in Anopheles mosquitoes and can expand our understanding of the zoonotic potential of malaria transmission between monkeys and humans.


Subject(s)
Anopheles , Malaria , Mosquito Vectors , Polymerase Chain Reaction , Anopheles/parasitology , Animals , Polymerase Chain Reaction/methods , Malaria/transmission , Malaria/epidemiology , Malaria/parasitology , Malaria/diagnosis , Mosquito Vectors/parasitology , Thailand/epidemiology , RNA, Ribosomal, 18S/analysis , RNA, Ribosomal, 18S/genetics , Plasmodium/isolation & purification , Plasmodium/genetics , Macaca fascicularis/parasitology , DNA, Protozoan/analysis , Humans , Sensitivity and Specificity
2.
Sci Rep ; 14(1): 3404, 2024 02 10.
Article in English | MEDLINE | ID: mdl-38337025

ABSTRACT

Tuberculosis (TB) is an infectious disease caused by the Mycobacterium tuberculosis complex (Mtbc), which develops from asymptomatic latent TB to active stages. The microbiome was purposed as a potential factor affecting TB pathogenesis, but the study was limited. The present study explored the association between gut-pharyngeal microbiome and TB stages in cynomolgus macaques using the full-length 16S rDNA amplicon sequencing based on Oxford Nanopore Technologies. The total of 71 macaques was divided into TB (-) control, TB (+) latent and TB (+) active groups. The differential abundance analysis showed that Haemophilus hemolyticus was decreased, while Prevotella species were increased in the pharyngeal microbiome of TB (+) macaques. In addition, Eubacterium coprostanoligenes in the gut was enriched in TB (+) macaques. Alteration of these bacteria might affect immune regulation and TB severity, but details of mechanisms should be further explored and validated. In summary, microbiota may be associated with host immune regulation and affect TB progression. The findings suggested the potential mechanisms of host-microbes interaction, which may improve the understanding of the role of microbiota and help develop therapeutics for TB in the future.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Nanopores , Tuberculosis , Animals , Tuberculosis/microbiology , Gastrointestinal Microbiome/genetics , Microbiota/genetics , Macaca fascicularis/genetics , RNA, Ribosomal, 16S/genetics
3.
Sci Rep ; 14(1): 1518, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38233591

ABSTRACT

The detection and management of Mycobacterium tuberculosis complex (MTBC) infection, the causative agent of tuberculosis (TB), in macaques, including cynomolgus macaques (Macaca fascicularis), are of significant concern in research and regions where macaques coexist with humans or other animals. This study explored the utility of the Xpert MTB/RIF Ultra assay, a widely adopted molecular diagnostic tool to diagnose tuberculosis (TB) in humans, to detect DNA from the Mycobacterium tuberculosis complex in clinical samples obtained from cynomolgus macaques. This investigation involved a comprehensive comparative analysis, integrating established conventional diagnostic methodologies, assessing oropharyngeal-tracheal wash (PW) and buccal swab (BS) specimen types, and follow-up assessments at 3-month, 6-month, and 12-month intervals. Our results demonstrated that the Xpert MTB/RIF Ultra assay was able to detect MTBC in 12 of 316 clinical samples obtained from cynomolgus macaques, presenting a potential advantage over bacterial culture and chest radiographs. The Xpert MTB/RIF Ultra assay exhibited exceptional sensitivity (100%) at the animal level, successfully detecting all macaques positive for M. tuberculosis as confirmed by traditional culture methods. The use of PW samples revealed that 5 positive samples from 99 (5.1%) were recommended for testing, compared to 0 samples from 99 buccal swab (BS) samples (0.0%). In particular, the definitive diagnosis of TB was confirmed in three deceased macaques by MTB culture, which detected the presence of the bacterium in tissue autopsy. Our findings demonstrate that the implementation of the Xpert MTB/RIF Ultra assay, along with prompt isolation measures, effectively reduced active TB cases among cynomolgus macaques over a 12-month period. These findings highlight the advance of the Xpert MTB/RIF Ultra assay in TB diagnosis and its crucial role in preventing potential outbreaks in cynomolgus macaques. With its rapidity, high sensitivity, and specificity, the Xpert MTB/RIF Ultra assay can be highly suitable for use in reference laboratories to confirm TB disease and effectively interrupt TB transmission.


Subject(s)
Antibiotics, Antitubercular , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Animals , Humans , Tuberculosis, Pulmonary/microbiology , Rifampin/pharmacology , Macaca fascicularis , Sensitivity and Specificity , Tuberculosis/diagnosis , Tuberculosis/veterinary , Tuberculosis/drug therapy , Sputum/microbiology , Antibiotics, Antitubercular/therapeutic use , Drug Resistance, Bacterial/genetics
4.
Viruses ; 15(10)2023 10 13.
Article in English | MEDLINE | ID: mdl-37896863

ABSTRACT

Herpes B virus (BV) is a zoonotic virus which can be transmitted from macaques to humans, which is often associated with high mortality rates. Because macaques often exhibit asymptomatic infections, individuals who come into contact with these animals face unexpected risks of BV infections. A serological test is widely performed to investigate BV infections. However, the assay's sensitivity and specificity appeared to be inadequate, and it does not necessarily indicate ongoing viral shedding. Here, we developed LAMP and qPCR assays aiming to detect BVs with a high sensitivity and specificity in various macaque species and validated them using oral swab samples collected from 97 wild cynomolgus macaques living in Thailand. Our LAMP and qPCR assays detected more than 50 and 10 copies of the target sequences per reaction, respectively. The LAMP assay could detect BV within 25 min, indicating its advantages for the rapid detection of BV. Collectively, our findings indicated that both assays developed in this study exhibit advantages and usefulness for BV surveillance and the diagnosis of BV infections in macaques. Furthermore, for the first time, we determined the partial genome sequences of BVs detected in cynomolgus macaques in Thailand. Phylogenetic analysis revealed the species-specific evolution of BV within macaques.


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Cercopithecine , Humans , Animals , Herpesvirus 1, Cercopithecine/genetics , Real-Time Polymerase Chain Reaction , Phylogeny , Herpesviridae Infections/diagnosis , Herpesviridae Infections/veterinary , Nucleic Acid Amplification Techniques , Molecular Diagnostic Techniques , Sensitivity and Specificity , Macaca fascicularis
5.
Animals (Basel) ; 13(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37508065

ABSTRACT

FSHr antibodies have been shown to inhibit the differentiation of spermatogonia to primary spermatocytes, resulting in infertility without a pathological effect on reproductive organs. The aim of this study was to develop single-chain variable fragments (scFvs) against the follicular-stimulating hormone receptor (anti-FSHr) using phage-display technology and to evaluate the effects of intratesticular administration of the anti-FSHr scFv on testicular function and testosterone production. A phage clone against the extracellular domain of FSHr selected from a scFv phagemid library was analyzed for binding kinetics by surface plasmon resonance. Using ultrasound guidance, three adult macaques (M. fascicularis) were administered with 1 mL of 0.4 mg/mL anti-FSHr scFv (treatment) and 1 mL sterile phosphate buffer solution (control) into the left and right rete testis, respectively. Testicular appearance and volume, ejaculate quality, and serum testosterone levels were recorded on day 0 (before injection) and on days 7, 28, and 56 (after injection). Testicular tissue biopsies were performed on day 7 and day 56 to quantify the mRNA expressions of androgen binding protein (ABP), inhibin subunit beta B (IHBB), and vascular endothelial growth factor A (VEGFA). The results demonstrated that the anti-FSHr scFv molecule was calculated as 27 kDa with a dissociation constant (KD) of 1.03 µM. The volume of the anti-FSHr scFv-injected testicle was reduced on days 28 and 56 compared with day 0 (p < 0.05). Total sperm number was reduced from day 0 (36.4 × 106 cells) to day 56 (1.6 × 106 cells) (p < 0.05). The percentage of sperm motility decreased from day 0 (81.7 ± 1.0%) to day 7 (23.3 ± 1.9%), day 28 (41.7 ± 53.4%), and day 56 (8.3 ± 1.9%) (p < 0.05). Sperm viability on day 0 was 86.8 ± 0.5%, which reduced to 64.2 ± 1.5%, 67.1 ± 2.2%, and 9.3 ± 1.1% on days 7, 28, and 56, respectively (p < 0.05). The expression of ABP and VEGFA on days 7 (14.2- and 3.2-fold) and 56 (5.6- and 5.5-fold) was less in the scFv-treated testicle compared with the controls (p < 0.05). On day 56, the expression of IHBB was less (p < 0.05) in the treated testis (1.3-fold) compared with the controls. Serum testosterone levels were unchanged throughout the study period (p > 0.05). This study characterized the anti-FSHr scFv and demonstrated that treatment with anti-FSHr ameliorates testicular function without altering testosterone levels, offering a potential alternative contraceptive for the long-tailed macaques.

6.
Sci Rep ; 13(1): 5842, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37037869

ABSTRACT

The wild-born long-tailed macaques (Macaca fascicularis) were recently recruited and used as breeders for the National Primate Research Center of Thailand, Chulalongkorn University (NPRCT-CU), and changes in their in-depth gut microbiota profiles were investigated. The Oxford Nanopore Technology (ONT) was used to explore full-length 16S rDNA sequences of gut microbiota in animals once captured in their natural habitat and 1-year following translocation and housing in a hygienic environment at NPRCT-CU. Our findings show that the gut microbiota of macaques after 1 year of hygienic housing and programmed diets feeding was altered and reshaped. The prevalent gut bacteria such as Prevotella copri and Faecalibacterium prausnitzii were enriched after translocation, causing the lower alpha diversity. The correlation analysis revealed that Prevotella copri, Phascolarctobacterium succinatutens, and Prevotella stercorea, showed a positive correlation with each other. Significantly enriched pathways in the macaques after translocation included biosynthesis of essential amino acids, fatty acids, polyamine and butanoate. The effects of microbiota change could help macaques to harvest the energy from programmed diets and adapt their gut metabolism. The novel probiotics and microbiota engineering approach could be further developed based on the current findings and should be helpful for captive animal health care management.


Subject(s)
Gastrointestinal Microbiome , Housing , Animals , Macaca fascicularis
7.
Front Plant Sci ; 13: 901978, 2022.
Article in English | MEDLINE | ID: mdl-36247553

ABSTRACT

Since the outbreak of the coronavirus disease (COVID) pandemic in 2019, the development of effective vaccines to combat the infection has been accelerated. With the recent emergence of highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), there are concerns regarding the immune escape from vaccine-induced immunity. Hence an effective vaccine against VOC with a potent immune response is required. Our previous study confirmed that the two doses of the plant-produced receptor-binding domain (RBD) of SARS-CoV-2 fused with the Fc region of human IgG1, namely Baiya SARS-CoV-2 Vax 1, showed high immunogenicity in mice and monkeys. Here, we aimed to evaluate the immunogenicity of a three-dose intramuscular injection of Baiya SARS-CoV-2 Vax 1 on days 0, 21, and 133 in cynomolgus monkeys. At 14 days after immunization, blood samples were collected to determine RBD-specific antibody titer, neutralizing antibody, and pseudovirus neutralizing antibody titers. Immunized monkeys developed significantly high levels of antigen-specific antibodies against SARS-CoV-2 compared to the control group. Interestingly, the sera collected from immunized monkeys also showed a neutralizing antibody response against the SARS-CoV-2 VOCs; Alpha, Beta, Gamma, Delta, and Omicron. These findings demonstrate that a three-dose regimen of Baiya SARS-CoV-2 Vax 1 vaccine elicits neutralizing immune response against SARS-CoV-2 variants.

8.
Vaccine ; 40(32): 4440-4452, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35697573

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an acute respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The prevention of SARS-CoV-2 transmission has become a global priority. Previously, we showed that a protein subunit vaccine that was developed based on the fusion of the SARS-CoV-2 receptor-binding domain (RBD) to the Fc portion of human IgG1 (RBD-Fc), produced in Nicotiana benthamiana, and adjuvanted with alum, namely, Baiya SARS-CoV-2 Vax 1, induced potent immunological responses in both mice and cynomolgus monkeys. Hence, this study evaluated the protective efficacy, safety, and toxicity of Baiya SARS-CoV-2 Vax 1 in K18-hACE2 mice, monkeys and Wistar rats. Two doses of vaccine were administered three weeks apart on Days 0 and 21. The administration of the vaccine to K18-hACE2 mice reduced viral loads in the lungs and brains of the vaccinated animals and protected the mice against challenge with SARS-CoV-2. In monkeys, the results of safety pharmacology tests, general clinical observations, and a core battery of studies of three vital systems, namely, the central nervous, cardiovascular, and respiratory systems, did not reveal any safety concerns. The toxicology study of the vaccine in rats showed no vaccine-related pathological changes, and all the animals remained healthy under the conditions of this study. Furthermore, the vaccine did not cause any abnormal toxicity in rats and was clinically tolerated even at the highest tested concentration. In addition, general health status, body temperature, local toxicity at the administration site, hematology, and blood chemistry parameters were also monitored. Overall, this work presents the results of the first systematic study of the safety profile of a plant-derived vaccine, Baiya SARS-CoV-2 Vax 1; this approach can be considered a viable strategy for the development of vaccines against COVID-19.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunogenicity, Vaccine , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Mice , Mice, Inbred BALB C , Rats , Rats, Wistar , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Subunit
9.
Mol Ther ; 30(8): 2722-2745, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35524407

ABSTRACT

Second-order spinal cord excitatory neurons play a key role in spinal processing and transmission of pain signals to the brain. Exogenously induced change in developmentally imprinted excitatory neurotransmitter phenotypes of these neurons to inhibitory has not yet been achieved. Here, we use a subpial dorsal horn-targeted delivery of AAV (adeno-associated virus) vector(s) encoding GABA (gamma-aminobutyric acid) synthesizing-releasing inhibitory machinery in mice with neuropathic pain. Treated animals showed a progressive and complete reversal of neuropathic pain (tactile and brush-evoked pain behavior) that persisted for a minimum of 2.5 months post-treatment. The mechanism of this treatment effect results from the switch of excitatory to preferential inhibitory neurotransmitter phenotype in dorsal horn nociceptive neurons and a resulting increase in inhibitory activity in regional spinal circuitry after peripheral nociceptive stimulation. No detectable side effects (e.g., sedation, motor weakness, loss of normal sensation) were seen between 2 and 13 months post-treatment in naive adult mice, pigs, and non-human primates. The use of this treatment approach may represent a potent and safe treatment modality in patients suffering from spinal cord or peripheral nerve injury-induced neuropathic pain.


Subject(s)
Neuralgia , Nociceptors , Animals , Gene Transfer Techniques , Mice , Neuralgia/etiology , Neuralgia/therapy , Posterior Horn Cells , Spinal Cord , Spinal Cord Dorsal Horn , Swine
10.
J Med Virol ; 94(9): 4265-4276, 2022 09.
Article in English | MEDLINE | ID: mdl-35615895

ABSTRACT

The constantly emerging severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) variants of concerns (VOCs) with mutations in the receptor-binding domain (RBD) spread rapidly and has become a severe public health problem worldwide. Effective vaccines and optimized booster vaccination strategies are thus highly required. Here, the gene encoding six different RBD (Alpha, Beta, Gamma, Kappa, Delta, and Epsilon variants) along with the Fc fragment of human IgG1 (RBD-Fc) was cloned into plant expression vector and produced in Nicotiana benthamiana by transient expression. Further, the immunogenicity of plant-produced variant RBD-Fc fusion proteins were tested in cynomolgus monkeys. Each group of cynomolgus monkeys was immunized three times intramuscularly with variant RBD-Fc vaccines at Day 0, 21, 42, and neutralizing antibody responses were evaluated against ancestral (Wuhan), Alpha, Beta, Gamma, and Delta variants. The results showed that three doses of the RBD-Fc vaccine significantly enhanced the immune response against all tested SARS-CoV-2 variants. In particular, the vaccines based on Delta and Epsilon mutant RBD elicit broadly neutralizing antibodies against ancestral (Wuhan), Alpha, and Delta SARS-CoV-2 variants whereas Beta and Gamma RBD-Fc vaccines elicit neutralizing antibodies against their respective SARS-CoV-2 strains. The Delta and Epsilon RBD-Fc based vaccines displayed cross-reactive immunogenicity and might be applied as a booster vaccine to induce broadly neutralizing antibodies. These proof-of-concept results will be helpful for the development of plant-derived RBD-Fc-based vaccines against SARS-CoV-2 and its variants.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , COVID-19 Vaccines , Carrier Proteins , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Nicotiana/genetics
11.
Am J Vet Res ; 83(1): 15-22, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34757923

ABSTRACT

OBJECTIVE: To develop a testing algorithm that incorporates multiple assays to evaluate host cellular and humoral immunity and antigen detection concerning Mycobacterium tuberculosis complex (MTBC) infection in captive nonhuman primates. ANIMALS: Cohorts of captive-bred and wild-caught macaques from 5 different geographic regions. PROCEDURES: Macaques were tested for MTBC infection by use of a γ interferon tuberculosis (GIFT) assay, an interferon-γ release assay, and other assays. In the first 2 cohorts (n = 15 and 181), initial validation of the GIFT assay was performed by use of experimentally infected and unexposed control macaques. In the next 3 cohorts (n = 59, 42, and 11), results were obtained for opportunistically collected samples from macaques exposed during spontaneous outbreaks. RESULTS: Sensitivity and specificity of the GIFT assay in the control cohorts were 100% and 97%, respectively, and were variable but enhanced by incorporating results from multiple assays in spontaneous outbreaks. CLINICAL RELEVANCE: The detection and management of MTBC infection in captive nonhuman primate populations is an ongoing challenge, especially with animal imports and transfers. Despite standardized practices of initial quarantine with regular intradermal tuberculin skin testing, spontaneous outbreaks continue to be reported. Since infection encompasses a range of disease manifestations over time, a testing algorithm that incorporates multiple assays, such as the GIFT assay, to evaluate host cellular and humoral immunity in addition to agent detection is needed. Testing a combination of samples from controlled studies and spontaneous outbreaks of MTBC infection in nonhuman primates would advance the development and validation of a functional algorithm that incorporates promising tools such as the GIFT assay.


Subject(s)
Interferon-gamma Release Tests , Tuberculosis , Algorithms , Animals , Interferon-gamma Release Tests/veterinary , Primates , Tuberculosis/diagnosis , Tuberculosis/veterinary
12.
Sci Rep ; 11(1): 14280, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34253790

ABSTRACT

Long-tailed macaques (Macaca fascicularis), distributed in Southeast Asia, are generally used in biomedical research. At present, the expansion of human communities overlapping of macaques' natural habitat causes human-macaque conflicts. To mitigate this problem in Thailand, the National Primate Research Center of Thailand, Chulalongkorn University (NPRCT-CU), was granted the permit to catch the surplus wild-born macaques and transfer them to the center. Based on the fact that the diets provided and the captive environments were different, their oral-gut microbiota should be altered. Thus, we investigated and compared the oral and fecal microbiome between wild-born macaques that lived in the natural habitats and those transferred to and reared in the NPRCT-CU for 1 year. The results from 16S rRNA high-throughput sequencing showed that the captive macaques had distinct oral-gut microbiota profiles and lower bacterial richness compared to those in wild macaques. The gut of wild macaques was dominated by Firmicutes which is probably associated with lipid absorption and storage. These results implicated the effects of captivity conditions on the microbiome that might contribute to crucial metabolic functions. Our study should be applied to the animal health care program, with respect to microbial functions, for non-human primates.


Subject(s)
Firmicutes/metabolism , Gastrointestinal Microbiome , Macaca/microbiology , Macaca/physiology , Animals , Biodiversity , Body Weight , Ecosystem , Female , High-Throughput Nucleotide Sequencing , Male , Metagenomics , Microbiota , Mouth Mucosa/microbiology , Phylogeny , RNA, Ribosomal, 16S/metabolism , Thailand , Zoology
13.
Front Plant Sci ; 12: 682953, 2021.
Article in English | MEDLINE | ID: mdl-34054909

ABSTRACT

The emergence of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected global public health and economy. Despite the substantial efforts, only few vaccines are currently approved and some are in the different stages of clinical trials. As the disease rapidly spreads, an affordable and effective vaccine is urgently needed. In this study, we investigated the immunogenicity of plant-produced receptor-binding domain (RBD) of SARS-CoV-2 in order to use as a subunit vaccine. In this regard, RBD of SARS-CoV-2 was fused with Fc fragment of human IgG1 and transiently expressed in Nicotiana benthamiana by agroinfiltration. The plant-produced RBD-Fc fusion protein was purified from the crude extract by using protein A affinity column chromatography. Two intramuscular administration of plant-produced RBD-Fc protein formulated with alum as an adjuvant have elicited high neutralization titers in immunized mice and cynomolgus monkeys. Further it has induced a mixed Th1/Th2 immune responses and vaccine-specific T-lymphocyte responses which was confirmed by interferon-gamma (IFN-γ) enzyme-linked immunospot assay. Altogether, our results demonstrated that the plant-produced SARS-CoV-2 RBD has the potential to be used as an effective vaccine candidate against SARS-CoV-2. To our knowledge, this is the first report demonstrating the immunogenicity of plant-produced SARS-CoV-2 RBD protein in mice and non-human primates.

14.
Planta Med ; 87(5): 395-403, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33063303

ABSTRACT

Pueraria mirifica is an endemic Thai plant that has been used for rejuvenation and in the relief of various aging diseases. Puerarin is one of the major isoflavones found in this plant and shows several pharmacological activities in relation to the Thai traditional use of P. mirifica. Therefore, comparative pharmacokinetics of pure puerarin alone and that in a P. mirifica extract in cynomolgus monkeys were conducted in order to investigate the pharmacokinetic profiles of the 2 preparations. To this end, puerarin and P. mirifica extract, at an equivalent dose of 10 mg/kg of puerarin, were orally dosed to adult female monkeys for 7 consecutive days. A single intravenous injection of puerarin at a dose of 1 mg/kg was also peformed. Serial blood samples and excreta were collected from 0 - 24 h and 0 - 48 h after dosing. Determination of the puerarin levels and its metabolites in biological samples was conducted by liquid chromatography tandem mass spectrometry. Plasma levels of aspartate aminotransferase, alanine aminotransferase, and creatinine fluctuated in the normal range, with no abnormal physical signs in the animal. The absolute oral bioavailability of puerarin was approximately 1% in both preparations. Accumulation of puerarin was found after oral dosing for 7 consecutive days in both groups. Major metabolites of puerarin found in monkeys were hydroxylation and deglycosylation products. A negligible amount of unchanged puerarin was detected in urine and feces. Pharmacokinetic profiles obtained from this study could help to design the prescribed remedy of puerarin and P. mirifica extract phytopharmaceutical products for human use.


Subject(s)
Isoflavones , Pueraria , Animals , Female , Macaca fascicularis , Phytoestrogens , Plant Extracts , Thailand
15.
Fungal Genet Biol ; 144: 103468, 2020 11.
Article in English | MEDLINE | ID: mdl-32980453

ABSTRACT

Cynomolgus macaque (Macaca fascicularis) is currently a common animal model for biomedical research. The National Primate Research Center of Thailand, Chulalongkorn University (NPRCT-CU) translocated wild-borne macaques to reared colony for research purposes. At present, no studies focus on fungal microbiome (Mycobiome) of this macaque. The functional roles of mycobiome and fungal pathogens have not been elucidated. Thus, this study aimed to investigate and compare oral and fecal mycobiome between wild and captive macaques by using high-throughput sequencing on internal transcribed spacer 2 (ITS2) rDNA. The results showed that the mycobiome of wild macaque has greater alpha diversity. The fecal mycobiome has more limited alpha diversity than those in oral cavity. The community is mainly dominated by saprophytic yeast in Kasachstania genus which is related to aiding metabolic function in gut. The oral microbiome of most captive macaques presented the Cutaneotrichosporon suggesting the fungal transmission through skin-oral contact within the colony. The potential pathogens that would cause harmful transmission in reared colonies were not found in either group of macaques but the pathogen prevention and animal care is still important to be concerned. In conclusion, the results of gut mycobiome analysis in Thai cynomolgus macaques provide us with the basic information of oral and fecal fungi and for monitoring macaque's health status for animal care of research use.


Subject(s)
DNA, Ribosomal Spacer/genetics , Fungi/genetics , Macaca fascicularis/microbiology , Mycobiome/genetics , Animals , Feces/microbiology , Fungi/classification , Fungi/isolation & purification , Genetic Variation/genetics , High-Throughput Nucleotide Sequencing , Macaca fascicularis/genetics , Mouth/microbiology
16.
Viruses ; 11(10)2019 10 22.
Article in English | MEDLINE | ID: mdl-31652508

ABSTRACT

Cynomolgus macaques are common across South East Asian countries including Thailand. The National Primate Research Center of Thailand, Chulalongkorn University (NPRCT-CU) captures wild-borne cynomolgus macaque for research use. Limited information is available on the enteric viruses and possible zoonotic infections into or from cynomolgus macaques. We characterized and compare the fecal virome of two populations; healthy wild-originated captive cynomolgus macaques (n = 43) reared in NPRCT-CU and healthy wild cynomolgus macaques (n = 35). Over 90% of recognized viral sequence reads amplified from feces were from bacterial viruses. Viruses from seven families of mammalian viruses were also detected (Parvoviridae, Anelloviridae, Picornaviridae, Adenoviridae, Papillomaviridae, Herpesviridae, and Caliciviridae). The genomes of a member of a new picornavirus genus we named Mafapivirus, a primate chapparvovirus, and a circular Rep-encoding single-strand (CRESS) DNA virus were also characterized. Higher abundance of CRESS DNA viruses of unknown tropism and invertebrate-tropic ambidensovirus were detected in wild versus captive macaques likely reflecting dietary differences. Short term rearing in captivity did not have a pronounced effect on the diversity of mammalian viruses of wild cynomolgus macaques. This study is the first report of the fecal virome of cynomolgus macaques, non-human primates frequently used in biomedical research and vaccination studies.


Subject(s)
Animals, Wild/virology , Animals, Zoo/virology , Enterovirus Infections/veterinary , Enterovirus/classification , Genetic Variation , Macaca fascicularis/virology , Animals , Feces/virology , Female , Genome, Viral , High-Throughput Nucleotide Sequencing , Male , Metagenomics , Phylogeny , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL
...