Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Microbiol ; 203(7): 4385-4396, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34117918

ABSTRACT

A mesocosm experiment was conducted to assess the side effects of the fungicide QuadrisR on soil bacterial functioning. QuadrisR was applied to a loamy sand soil at increasing concentrations (0.0-35.0 mg kg-1 dry soil) calculated according to its active ingredient azoxystrobin (Az). Soil sampling was carried out from the 1st to the 120th day of soil incubation to determine the changes occurred in bacterial catabolism using the technique of community-level physiological profiling (CLPP) via Biolog EcoPlates™. It was found that the field recommended fungicide concentration (2.90 mg kg-1 dry soil) altered mostly the low-available Biolog carbon sources (< 0.50 optical density (OD)), whereas the fungicide higher concentrations (14.65 and 35.00 mg kg-1 dry soil) were effective also on medium (0.50-1.00 OD) and highly (> 1.00 OD) utilizable ones. Pearson correlation analysis revealed that the main environmental factors correlated with the utilization rates of Biolog carbon sources (CSs) were soil nutrients and pH. No linear relationships were found between Az soil residues and the use of CSs. We concluded that QuadrisR affects bacterial catabolic profiles in loamy sand soils through soil acidification and altering soil nutrient pool. The study also revealed that CLPP and EcoPlate™ are useful practical tools for testing the fungicide ecotoxicity.


Subject(s)
Bacteria , Fungicides, Industrial , Pyrimidines , Soil Microbiology , Soil Pollutants , Strobilurins , Bacteria/drug effects , Fungicides, Industrial/pharmacology , Pyrimidines/pharmacology , Sand , Soil/chemistry , Soil Pollutants/analysis , Strobilurins/pharmacology
2.
Environ Sci Pollut Res Int ; 23(6): 5644-53, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26578378

ABSTRACT

Ore mining and processing have greatly altered ecosystems, often limiting their capacity to provide ecosystem services critical to our survival. The soil environments of two abandoned uranium mines were chosen to analyze the effects of long-term uranium and heavy metal contamination on soil microbial communities using dehydrogenase and phosphatase activities as indicators of metal stress. The levels of soil contamination were low, ranging from 'precaution' to 'moderate', calculated as Nemerow index. Multivariate analyses of enzyme activities revealed the following: (i) spatial pattern of microbial endpoints where the more contaminated soils had higher dehydrogenase and phosphatase activities, (ii) biological grouping of soils depended on both the level of soil contamination and management practice, (iii) significant correlations between both dehydrogenase and alkaline phosphatase activities and soil organic matter and metals (Cd, Co, Cr, and Zn, but not U), and (iv) multiple relationships between the alkaline than the acid phosphatase and the environmental factors. The results showed an evidence of microbial tolerance and adaptation to the soil contamination established during the long-term metal exposure and the key role of soil organic matter in maintaining high microbial enzyme activities and mitigating the metal toxicity. Additionally, the results suggested that the soil microbial communities are able to reduce the metal stress by intensive phosphatase synthesis, benefiting a passive environmental remediation and provision of vital ecosystem services.


Subject(s)
Metals, Heavy/chemistry , Mining , Radioisotopes/chemistry , Soil Microbiology , Soil Pollutants, Radioactive/chemistry , Uranium , Bulgaria , Ecosystem , Soil , Time Factors
3.
Archaea ; 2014: 196140, 2014.
Article in English | MEDLINE | ID: mdl-24711725

ABSTRACT

Uranium mining and milling activities adversely affect the microbial populations of impacted sites. The negative effects of uranium on soil bacteria and fungi are well studied, but little is known about the effects of radionuclides and heavy metals on archaea. The composition and diversity of archaeal communities inhabiting the waste pile of the Sliven uranium mine and the soil of the Buhovo uranium mine were investigated using 16S rRNA gene retrieval. A total of 355 archaeal clones were selected, and their 16S rDNA inserts were analysed by restriction fragment length polymorphism (RFLP) discriminating 14 different RFLP types. All evaluated archaeal 16S rRNA gene sequences belong to the 1.1b/Nitrososphaera cluster of Crenarchaeota. The composition of the archaeal community is distinct for each site of interest and dependent on environmental characteristics, including pollution levels. Since the members of 1.1b/Nitrososphaera cluster have been implicated in the nitrogen cycle, the archaeal communities from these sites were probed for the presence of the ammonia monooxygenase gene (amoA). Our data indicate that amoA gene sequences are distributed in a similar manner as in Crenarchaeota, suggesting that archaeal nitrification processes in uranium mining-impacted locations are under the control of the same key factors controlling archaeal diversity.


Subject(s)
Crenarchaeota/classification , Crenarchaeota/genetics , Genetic Variation , Oxidoreductases/genetics , Phylogeny , Soil Microbiology , Bulgaria , Cluster Analysis , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
4.
Ecotoxicol Environ Saf ; 100: 226-32, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24315773

ABSTRACT

Bacterial activity and physiological diversity were characterized in mining and milling impacted soils collected from three abandoned uranium mine sites, Senokos, Buhovo and Sliven, using bacterial dehydrogenase activity and Biolog (EcoPlate) tests. The elemental composition of soils revealed high levels of uranium and heavy metals (sum of technogenic coefficients of contamination; TCC(sum) pollution as follows: Sliven (uranium - 374 mg/kg; TCC(sum) - 23.40) >Buhovo (uranium - 139.20mg/kg; TCC(sum) - 3.93) >Senokos (uranium - 23.01 mg/kg; TCC(sum) - 0.86). The physiological profiles of the bacterial community level were site specific, and indicated intensive utilization of polyols, carbohydrates and carboxylic acids in low and medium polluted environments, and i-erithrytol and 2-hydroxy-benzoic acid in the highly polluted environment of Sliven waste pile. Enzymes which take part in the biodegradation of recalcitrant substances were more resistant to pollution than these from the pathways of the easily degradable carbon sources. The Shannon index indicated that the physiological diversity of bacteria was site specific but not in line with the levels of pollution. A general tendency of increasing the importance of the number of utilizable substrates to bacterial physiological diversity was observed at less polluted sites, whereas in highly polluted sites the evenness of substrate utilization rate was more significant. Dehydrogenase activity was highest in Senokos upper soil layer and positively correlated (p<0.01) with the soil organic matter content. The bacterial activity (EcoPlate) and physiological diversity (Shannon index) correlated significantly and negatively with As, Cu, Zn, Pb and U, and Co, Cr, Ni and Mn, respectively. We concluded that the observed site specific shifts in bacterial communities were complex due to both the environmental peculiarities and the bacterial tolerance to the relevant level of pollution, rather than a strong indication of uranium and heavy metals toxicity.


Subject(s)
Bacteria/drug effects , Metals, Heavy/toxicity , Mining , Soil Microbiology , Bacteria/enzymology , Bacteria/metabolism , Environment , Metals, Heavy/analysis , Metals, Heavy/metabolism , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/toxicity , Uranium/analysis , Uranium/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...