Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 156(4): 044305, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35105064

ABSTRACT

Quantum calculations are reported for the stereodynamic control of the H + D2 ↔ D + HD chemical reaction in the energy range of 1-50 K. Stereodynamic control is achieved by a formalism similar to that reported by Perreault et al. [Nat. Chem. 10, 561 (2018)] in recent experimental works in which the alignment of the molecular bond axis relative to the incident relative velocity is controlled by selective preparations of the molecule in a specific or superposition of magnetic projection quantum numbers of the initial molecular rotational level. The approach presented here generalizes the experimental scheme of Perreault et al. and offers additional degree of control through various experimental preparations of the molecular alignment angle. Illustrative results presented for the H + D2 and D + HD reactions show significant control with the possibility of turning the reaction completely on or off with the appropriate stereodynamic preparation of the molecular state. Various scenarios for maximizing and minimizing the reaction outcomes are identified with the selective preparation of molecular rotational states.

2.
J Phys Chem Lett ; 11(13): 4970-4975, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32512999

ABSTRACT

Quantum reactive scattering calculations on the vibrational quenching of HD due to collisions with H were carried out employing an accurate potential energy surface. The state-to-state cross sections for the chemical reaction HD(v = 1, j = 0) + H → D + H2(v' = 0, j') at collision energies between 1 and 10 000 cm-1 are presented, and a Feshbach resonance in the low-energy regime, below the reaction barrier, is observed for the first time. The resonance is attributed to coupling with the vibrationally adiabatic potential correlating to the v = 1, j = 1 level of the HD molecule, and it is dominated by the contribution from a single partial wave. The properties of the resonance, such as its dynamic behavior, phase behavior, and lifetime, are discussed.

3.
J Chem Phys ; 147(7): 074302, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28830160

ABSTRACT

Quantum reactive scattering calculations are reported for the ultracold hydrogen-exchange reaction and its non-reactive atom-exchange isotopic counterparts, proceeding from excited rotational states. It is shown that while the geometric phase (GP) does not necessarily control the reaction to all final states, one can always find final states where it does. For the isotopic counterpart reactions, these states can be used to make a measurement of the GP effect by separately measuring the even and odd symmetry contributions, which experimentally requires nuclear-spin final-state resolution. This follows from symmetry considerations that make the even and odd identical-particle exchange symmetry wavefunctions which include the GP locally equivalent to the opposite symmetry wavefunctions which do not. It is shown how this equivalence can be used to define a constant which quantifies the GP effect and can be obtained solely from experimentally observable rates. This equivalence reflects the important role that discrete symmetries play in ultracold chemistry and highlights the key role that ultracold reactions can play in understanding fundamental aspects of chemical reactivity more generally.

4.
Nat Commun ; 8: 15897, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28722014

ABSTRACT

A fundamental question in the study of chemical reactions is how reactions proceed at a collision energy close to absolute zero. This question is no longer hypothetical: quantum degenerate gases of atoms and molecules can now be created at temperatures lower than a few tens of nanokelvin. Here we consider the benchmark ultracold reaction between, the most-celebrated ultracold molecule, KRb and K. We map out an accurate ab initio ground-state potential energy surface of the K2Rb complex in full dimensionality and report numerically-exact quantum-mechanical reaction dynamics. The distribution of rotationally resolved rates is shown to be Poissonian. An analysis of the hyperspherical adiabatic potential curves explains this statistical character revealing a chaotic distribution for the short-range collision complex that plays a key role in governing the reaction outcome.

5.
J Chem Phys ; 145(16): 164303, 2016 Oct 28.
Article in English | MEDLINE | ID: mdl-27802652

ABSTRACT

The H3 system has served as a prototype for geometric phase (GP) effects in bimolecular chemical reactions for over three decades. Despite a large number of theoretical and experimental efforts, no conclusive evidence of GP effects in the integral cross section or reaction rate has been presented until recently [B. Kendrick et al., Phys. Rev. Lett. 115, 153201 (2015)]. Here we report a more detailed account of GP effects in the H + H2(v = 4, j = 0) → H + H2(v', j') (para-para) reaction rate coefficients for temperatures between 1 µK (8.6 × 10-11 eV) and 100 K (8.6 × 10-3 eV). The GP effect is found to persist in both vibrationally resolved and total rate coefficients for collision energies up to about 10 K. The GP effect also appears in rotationally resolved differential cross sections leading to a very different oscillatory structure in both energy and scattering angle. It is shown to suppress a prominent shape resonance near 1 K and enhance a shape resonance near 8 K, providing new experimentally verifiable signatures of the GP effect in the fundamental hydrogen exchange reaction. The GP effect in the D + D2 and T + T2 reactions is also examined in the ultracold limit and its sensitivity to the potential energy surface is explored.

6.
Phys Rev Lett ; 115(15): 153201, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26550721

ABSTRACT

Quantum reactive scattering calculations for the hydrogen exchange reaction H+H_{2}(v=4,j=0)→H+H_{2}(v^{'}, j^{'}) and its isotopic analogues are reported for ultracold collision energies. Because of the unique properties associated with ultracold collisions, it is shown that the geometric phase effectively controls the reactivity. The rotationally resolved rate coefficients computed with and without the geometric phase are shown to differ by up to 4 orders of magnitude. The effect is also significant in the vibrationally resolved and total rate coefficients. The dynamical origin of the effect is discussed and the large geometric phase effect reported here might be exploited to control the reactivity through the application of external fields or by the selection of a particular nuclear spin state.

7.
Nat Commun ; 6: 7918, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26224326

ABSTRACT

The geometric phase is shown to control the outcome of an ultracold chemical reaction. The control is a direct consequence of the sign change on the interference term between two scattering pathways (direct and looping), which contribute to the reactive collision process in the presence of a conical intersection (point of degeneracy between two Born-Oppenheimer electronic potential energy surfaces). The unique properties of the ultracold energy regime lead to an effective quantization of the scattering phase shift enabling maximum constructive or destructive interference between the two pathways. By taking the O+OH→H+O2 reaction as an illustrative example, it is shown that inclusion of the geometric phase modifies ultracold reaction rates by nearly two orders of magnitude. Interesting experimental control possibilities include the application of external electric and magnetic fields that might be used to exploit the geometric phase effect reported here and experimentally switch on or off the reactivity.

8.
Phys Chem Chem Phys ; 8(42): 4881-96, 2006 Nov 14.
Article in English | MEDLINE | ID: mdl-17066178

ABSTRACT

The effect of reactant polarisation on the dynamics of the title reaction at collision energies up to 1.6 eV is analysed in depth. The analysis takes advantage of two novel theoretical concepts: intrinsic reaction properties and stereodynamical portraits. Exact quantum methods are used to determine the polarisation moments that quantify the intrinsic reactant polarisation at various levels of detail, including or not product state and/or scattering angle resolution. The data is then examined with the aid of stereodynamical portraits, which facilitate the rationalisation of the stereochemical effects that are relevant for the reaction dynamics. This allows for detailed characterisations of the so-called direct and delayed reaction mechanisms.


Subject(s)
Deuterium/chemistry , Hydrogen/chemistry , Models, Chemical , Quantum Theory , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL