Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
1.
J Affect Disord ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38705527

ABSTRACT

BACKGROUND: Glaucoma, a progressive neurodegenerative disorder leading to irreversible blindness, is associated with heightened rates of generalized anxiety and depression. This study aims to comprehensively investigate brain morphological changes in glaucoma patients, extending beyond visual processing areas, and explores potential overlaps with alterations observed in anxiety and depression. METHODS: A comparative meta-analysis was conducted, using case-control studies of brain structural integrity in glaucoma patients. We aimed to identify regions with gray matter volume (GMV) changes, examine their role within distinct large-scale networks, and assess overlap with generalized anxiety disorder (GAD) and major depressive disorder (MDD). RESULTS: Glaucoma patients exhibited significant GMV reductions in visual processing regions (lingual gyrus, thalamus). Notably, volumetric reductions extended beyond visual systems, encompassing the left putamen and insula. Behavioral and functional network decoding revealed distinct large-scale networks, implicating visual, motivational, and affective domains. The insular region, linked to pain and affective processes, displayed reductions overlapping with alterations observed in GAD. LIMITATIONS: While the study identified significant VBM changes, the inclusion of studies from both the glaucoma and GAD cohorts is limited due to the lack of independent studies meeting our inclusion criteria. CONCLUSION: The study proposes a tripartite brain model for glaucoma, connecting visual processing changes to the lingual gyrus and suggesting additional alterations in the putamen and insular regions tied to emotional or motivational functions. These neuroanatomical changes extend beyond the visual system, implying broader implications for brain structure and potential pathological developments, providing insights into the overall neurological consequences of this visually focused disorder.

2.
Int J Clin Health Psychol ; 24(2): 100462, 2024.
Article in English | MEDLINE | ID: mdl-38665809

ABSTRACT

Background: Inhibitory control represents a core executive function that critically facilitates adaptive behavior and survival in an ever-changing environment. Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has been hypothesized to improve behavioral inhibition performance, however the neurocomputational mechanism of taVNS-induced neuroenhancement remains elusive. Method: In the current study, we investigated the efficacy of taVNS in a sham-controlled between-subject functional near infrared spectroscopy (fNIRS) experiment with an emotional face Go/No-Go paradigm in ninety healthy young adults. Results: After a data quality check, eighty-two subjects were included in the final data analysis. Behaviorally, the taVNS improved No-Go response accuracy, together with computational modeling using Hierarchical Bayesian estimation of the Drift Diffusion Model (HDDM) indicating that it specifically reduced the information accumulation rate for Go responses, and this was negatively associated with increased accuracy of No-Go responses. On the neural level, taVNS enhanced engagement of the bilateral inferior frontal gyrus (IFG) during inhibition of angry expression faces and modulated functional couplings (FCs) within the prefrontal inhibitory control network. Mediation models revealed that taVNS-induced facilitation of inhibitory control was critically mediated by a decreased information accumulation for Go responses and concomitantly enhanced neurofunctional coupling between the inferior and orbital frontal cortex. Discussion: Our findings demonstrate a potential for taVNS to improve emotional inhibitory control via reducing pre-potent responses and enhancing FCs within prefrontal inhibitory control networks, suggesting a promising therapeutic role in treating specific disorders characterized by inhibitory control deficits.

3.
Transl Psychiatry ; 14(1): 168, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553454

ABSTRACT

Autistic individuals generally demonstrate impaired emotion recognition but it is unclear whether effects are emotion-specific or influenced by oxytocin receptor (OXTR) genotype. Here we implemented a dimensional approach using an implicit emotion recognition task together with functional MRI in a large cohort of neurotypical adult participants (N = 255, male = 131, aged 17-29 years) to establish associations between autistic traits and neural and behavioral responses to specific face emotions, together with modulatory effects of OXTR genotype. A searchlight-based multivariate pattern analysis (MVPA) revealed an extensive network of frontal, basal ganglia, cingulate and limbic regions exhibiting significant predictability for autistic traits from patterns of responses to angry relative to neutral expression faces. Functional connectivity analyses revealed a genotype interaction (OXTR SNPs rs2254298, rs2268491) for coupling between the orbitofrontal cortex and mid-cingulate during angry expression processing, with a negative association between coupling and autistic traits in the risk-allele group and a positive one in the non-risk allele group. Overall, results indicate extensive emotion-specific associations primarily between patterns of neural responses to angry faces and autistic traits in regions processing motivation, reward and salience but not in early visual processing. Functional connections between these identified regions were not only associated with autistic traits but also influenced by OXTR genotype. Thus, altered patterns of neural responses to threatening faces may be a potential biomarker for autistic symptoms although modulatory influences of OXTR genotype need to be taken into account.


Subject(s)
Autistic Disorder , Receptors, Oxytocin , Adolescent , Adult , Female , Humans , Male , Young Adult , Anger , Autistic Disorder/genetics , Emotions/physiology , Genotype , Magnetic Resonance Imaging , Oxytocin , Receptors, Oxytocin/genetics , Receptors, Oxytocin/metabolism
4.
Pharmaceutics ; 16(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38543227

ABSTRACT

The role of the hypothalamic neuropeptide oxytocin in influencing the brain and behavior has been the subject of widespread research over the last few decades due, most notably, to its reported involvement in promoting social cognition and motivation, reducing anxiety, and relieving pain. It is also increasingly being considered as an important therapeutic intervention in a variety of disorders with social dysfunction as a symptom. While, in recent years, studies in humans have administered oxytocin primarily via an intranasal route, since it may partly enter the brain directly this way via the olfactory and trigeminal nerves, there is increasing evidence that many of its functional effects can be peripherally mediated via increasing its concentration in the blood. This has opened up an oromucosal administration route as an alternative, which is beneficial since the oral consumption of peptides is problematic due to their rapid breakdown in the acidic environment of the gastrointestinal system. In this review we will discuss both the methodologies we have developed for administering oxytocin via lingual application and medicated lollipops, 'oxipops', in terms of increasing blood concentrations and the bioavailability of the peptide, and also their validation in terms of functional effects on the brain and behavior. While areas under the curve are significantly greater in terms of plasma oxytocin concentrations following intranasally relative to oromucosally administered oxytocin, with the estimated absolute bioavailability of the latter being around 4.4% compared with 11.1% for intranasal administration, the time to peak concentrations (around 30 min) and functional effects on the brain and behavior are broadly similar. We will also discuss potential therapeutic advantages of the oromucosal administration of oxytocin in different clinical contexts and its wider application for other peptides which are increasingly being developed for therapeutic use.

5.
Nat Commun ; 15(1): 1544, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378947

ABSTRACT

Uncertainty about potential future threats and the associated anxious anticipation represents a key feature of anxiety. However, the neural systems that underlie the subjective experience of threat anticipation under uncertainty remain unclear. Combining an uncertainty-variation threat anticipation paradigm that allows precise modulation of the level of momentary anxious arousal during functional magnetic resonance imaging (fMRI) with multivariate predictive modeling, we train a brain model that accurately predicts subjective anxious arousal intensity during anticipation and test it across 9 samples (total n = 572, both gender). Using publicly available datasets, we demonstrate that the whole-brain signature specifically predicts anxious anticipation and is not sensitive in predicting pain, general anticipation or unspecific emotional and autonomic arousal. The signature is also functionally and spatially distinguishable from representations of subjective fear or negative affect. We develop a sensitive, generalizable, and specific neuroimaging marker for the subjective experience of uncertain threat anticipation that can facilitate model development.


Subject(s)
Anxiety , Emotions , Uncertainty , Fear , Brain/diagnostic imaging , Brain Mapping , Magnetic Resonance Imaging , Anticipation, Psychological
6.
Neuroimage ; 288: 120529, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301879

ABSTRACT

Parent-child shared experiences has an important influence on social development in children although contributions of mothers and fathers may differ. Neural synchronicity occurs between mothers and fathers and their children during social interactions but it is unclear whether they differ in this respect. We used data from simultaneous fNIRS hyperscanning in mothers (n = 33) and fathers (n = 29) and their children (3-4 years) to determine different patterns and strengths of neural synchronization in the frontal cortex during co-viewing of videos or free-play. Mothers showed greater synchrony with child than fathers during passive viewing of videos and the synchronization was positively associated with video complexity and negatively associated with parental stress. During play interactions, mothers showed more controlling behaviors over their child and greater evidence for joint gaze and joint imitation play with child whereas fathers spent more time gazing at other things. In addition, different aspects of child communication promoted neural synchrony between mothers and fathers and child during active play interactions. Overall, our findings indicate greater neural and behavioral synchrony between mothers than fathers and young children during passive or active shared experiences, although for both it was weakened by parental distress and child difficulty.


Subject(s)
Fathers , Parent-Child Relations , Male , Female , Humans , Child, Preschool , Mothers , Parents , Communication
7.
IEEE J Biomed Health Inform ; 28(4): 2223-2234, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38285570

ABSTRACT

Preterm birth is the leading cause of death in children under five years old, and is associated with a wide sequence of complications in both short and long term. In view of rapid neurodevelopment during the neonatal period, preterm neonates may exhibit considerable functional alterations compared to term ones. However, the identified functional alterations in previous studies merely achieve moderate classification performance, while more accurate functional characteristics with satisfying discrimination ability for better diagnosis and therapeutic treatment is underexplored. To address this problem, we propose a novel brain structural connectivity (SC) guided Vision Transformer (SCG-ViT) to identify functional connectivity (FC) differences among three neonatal groups: preterm, preterm with early postnatal experience, and term. Particularly, inspired by the neuroscience-derived information, a novel patch token of SC/FC matrix is defined, and the SC matrix is then adopted as an effective mask into the ViT model to screen out input FC patch embeddings with weaker SC, and to focus on stronger ones for better classification and identification of FC differences among the three groups. The experimental results on multi-modal MRI data of 437 neonatal brains from publicly released Developing Human Connectome Project (dHCP) demonstrate that SCG-ViT achieves superior classification ability compared to baseline models, and successfully identifies holistically different FC patterns among the three groups. Moreover, these different FCs are significantly correlated with the differential gene expressions of the three groups. In summary, SCG-ViT provides a powerfully brain-guided pipeline of adopting large-scale and data-intensive deep learning models for medical imaging-based diagnosis.


Subject(s)
Connectome , Premature Birth , Female , Child , Humans , Infant, Newborn , Child, Preschool , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Connectome/methods , Electric Power Supplies
8.
Commun Biol ; 7(1): 109, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38242969

ABSTRACT

Outcomes of past decisions profoundly shape our behavior. However, choice-outcome associations can become volatile and adaption to such changes is of importance. The present study combines pharmaco-electroencephalography with computational modeling to examine whether intranasal oxytocin can modulate reinforcement learning under a volatile vs. a stable association. Results show that oxytocin increases choice accuracy independent of learning context, which is paralleled by a larger N2pc and a smaller P300. Model-based analyses reveal that while oxytocin promotes learning by accelerating value update of outcomes in the volatile context, in the stable context it does so by improving choice consistency. These findings suggest that oxytocin's facilitatory effects on learning may be exerted via improving early attentional selection and late neural processing efficiency, although at the computational level oxytocin's actions are highly adaptive between learning contexts. Our findings provide proof of concept for oxytocin's therapeutic potential in mental disorders with adaptive learning dysfunction.


Subject(s)
Learning , Oxytocin , Humans , Attention , Learning/physiology , Mental Disorders , Oxytocin/pharmacology , Social Behavior
9.
Neuroimage ; 284: 120455, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37952779

ABSTRACT

Real-time fMRI (rt-fMRI) neurofeedback (NF) training is a novel non-invasive technique for volitional brain modulation. Given the important role of the anterior insula (AI) in human cognitive and affective processes, it has become one of the most investigated regions in rt-fMRI studies. Most rt-fMRI insula studies employed emotional recall/imagery as the regulation strategy, which may be less effective for psychiatric disorders characterized by altered emotional processing. The present study thus aimed to examine the feasibility of a novel interoceptive strategy based on heartbeat detection in rt-fMRI guided AI regulation and its associated behavioral changes using a randomized double-blind, sham feedback-controlled between-subject design. 66 participants were recruited and randomly assigned to receive either NF from the left AI (LAI) or sham feedback from a control region while using the interoceptive strategy. N = 57 participants were included in the final data analyses. Empathic and interoceptive pre-post training changes were collected as behavioral measures of NF training effects. Results showed that participants in the NF group exhibited stronger LAI activity than the control group with LAI activity being positively correlated with interoceptive accuracy following NF training, although there were no significant increases of LAI activity over training sessions. Importantly, ability of LAI regulation could be maintained in a transfer session without feedback. Successful LAI regulation was associated with strengthened functional connectivity of the LAI with cognitive control, memory and learning, and salience/interoceptive networks. The present study demonstrated for the first time the efficacy of a novel regulation strategy based on interoceptive processing in up-regulating LAI activity. Our findings also provide proof of concept for the translational potential of this strategy in rt-fMRI AI regulation of psychiatric disorders characterized by altered emotional processing.


Subject(s)
Magnetic Resonance Imaging , Neurofeedback , Humans , Magnetic Resonance Imaging/methods , Neurofeedback/methods , Emotions/physiology , Brain/physiology , Empathy , Brain Mapping/methods
11.
J Psychiatr Res ; 167: 23-31, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37820447

ABSTRACT

Comorbidity has been frequently observed between generalized anxiety disorder (GAD) and major depressive disorder (MDD), however, common and distinguishable alterations in the topological organization of functional brain networks remain poorly understood. We sought to determine a robust and sensitive functional connectivity marker for diagnostic classification and symptom severity prediction. Multi-layered dynamic functional connectivity including whole brain, network-node and node-node layers via graph theory and gradient analyses were applied to functional MRI resting-state data obtained from 31 unmedicated GAD and 34 unmedicated MDD patients as well as 33 age and education matched healthy controls (HC). GAD and MDD symptoms were assessed using Penn State Worry Questionnaire and Beck Depression Inventory II, respectively. Three network measures including global properties (i.e., global efficiency, characteristic path length), regional nodal property (i.e., degree) and connectivity gradients were computed. Results showed that both patient groups exhibited abnormal dynamic cortico-subcortical topological organization compared to healthy controls, with MDD > GAD > HC in degree of randomization. Furthermore, our multi-layered dynamic functional connectivity network model reached 77% diagnostic accuracy between GAD and MDD and was highly predictive of symptom severity, respectively. Gradients of functional connectivity for superior frontal cortex-subcortical regions, middle temporal gyrus-subcortical regions and amygdala-cortical regions contributed more in this model compared to other gradients. We found shared and distinct cortico-subcortical connectivity features in dynamic functional brain networks between GAD and MDD, which together can promote the understanding of common and disorder-specific topological organization dysregulations and facilitate early neuroimaging-based diagnosis.

12.
Eur Neuropsychopharmacol ; 77: 24-34, 2023 12.
Article in English | MEDLINE | ID: mdl-37666184

ABSTRACT

Serotonin (5-HT) has long been implicated in adaptive emotion regulation as well as the development and treatment of emotional dysregulations in mental disorders. Accumulating evidence suggests a genetic vulnerability may render some individuals at a greater risk for the detrimental effects of transient variations in 5-HT signaling. The present study aimed to investigate whether individual variations in the Tryptophan hydroxylase 2 (TPH2) genetics influence susceptibility for behavioral and neural threat reactivity dysregulations during transiently decreased 5-HT signaling. To this end, interactive effects between TPH2 (rs4570625) genotype and acute tryptophan depletion (ATD) on threat reactivity were examined in a within-subject placebo-controlled pharmacological fMRI trial (n = 51). A priori genotype stratification of extreme groups (GG vs. TT) allowed balanced sampling. While no main effects of ATD on neural reactivity to threat-related stimuli and mood state were observed in the entire sample, accounting for TPH2 genotype revealed an ATD-induced increase in subjective anxious arousal in the GG but not the TT carriers. The effects were mirrored on the neural level, such that ATD specifically reduced ventromedial prefrontal cortex reactivity towards threat-related stimuli in the GG carriers. Furthermore, the ATD-induced increase in subjective anxiety positively associated with the extent of ATD-induced changes in ventromedial prefrontal cortex activity in response to threat-related stimuli in GG carriers. Together the present findings suggest for the first time that individual variations in TPH2 genetics render individuals susceptible to the anxiogenic and neural effects of a transient decrease in 5-HT signaling.


Subject(s)
Serotonin , Tryptophan , Male , Humans , Anxiety/genetics , Anxiety/psychology , Prefrontal Cortex/diagnostic imaging , Polymorphism, Genetic , Tryptophan Hydroxylase/genetics
13.
Neuroimage ; 277: 120263, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37399932

ABSTRACT

The mirror neuron system (MNS), including the inferior frontal gyrus (IFG), inferior parietal lobule (IPL) and superior temporal sulcus (STS) plays an important role in action representation and imitation and may be dysfunctional in autism spectrum disorder (ASD). However, it's not clear how these three regions respond and interact during the imitation of different basic facial expressions and whether the pattern of responses is influenced by autistic traits. Thus, we conducted a natural facial expression (happiness, angry, sadness and fear) imitation task in 100 healthy male subjects where expression intensity was measured using facial emotion recognition software (FaceReader) and MNS responses were recorded using functional near-infrared spectroscopy (fNIRS). Autistic traits were measured using the Autism Spectrum Quotient questionnaire. Results showed that imitation of happy expressions produced the highest expression intensity but a small deactivation in MNS responses, suggesting a lower processing requirement compared to other expressions. A cosine similarity analysis indicated a distinct pattern of MNS responses during imitation of each facial expression with functional intra-hemispheric connectivity between the left IPL and left STS being significantly higher during happy compared to other expressions, while inter-hemispheric connectivity between the left and right IPL differed between imitation of fearful and sad expressions. Furthermore, functional connectivity changes during imitation of each different expression could reliably predict autistic trait scores. Overall, the results provide evidence for distinct patterns of functional connectivity changes between MNS regions during imitation of different emotions which are also associated with autistic traits.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Mirror Neurons , Humans , Male , Facial Expression , Mirror Neurons/physiology , Autism Spectrum Disorder/diagnostic imaging , Brain Mapping/methods , Imitative Behavior/physiology , Emotions/physiology
14.
Elife ; 122023 05 12.
Article in English | MEDLINE | ID: mdl-37171081

ABSTRACT

Background: Social touch constitutes a key component of human social relationships, although in some conditions with social dysfunction, such as autism, it can be perceived as unpleasant. We have previously shown that intranasal administration of oxytocin facilitates the pleasantness of social touch and activation of brain reward and social processing regions, although it is unclear if it influences responses to gentle stroking touch mediated by cutaneous C-touch fibers or pressure touch mediated by other types of fibers. Additionally, it is unclear whether endogenous oxytocin acts via direct entry into the brain or by increased peripheral blood concentrations. Methods: In a randomized controlled design, we compared effects of intranasal (direct entry into the brain and increased peripheral concentrations) and oral (only peripheral increases) oxytocin on behavioral and neural responses to social touch targeting C-touch (gentle-stroking) or other (medium pressure without stroking) cutaneous receptors. Results: Although both types of touch were perceived as pleasant, intranasal and oral oxytocin equivalently enhanced pleasantness ratings and responses of reward, orbitofrontal cortex, and social processing, superior temporal sulcus, regions only to gentle-stroking not medium pressure touch. Furthermore, increased blood oxytocin concentrations predicted the pleasantness of gentle stroking touch. The specificity of neural effects of oxytocin on C-touch targeted gentle stroking touch were confirmed by time-course extraction and classification analysis. Conclusions: Increased peripheral concentrations of oxytocin primarily modulate its behavioral and neural responses to gentle social touch mediated by C-touch fibers. Findings have potential implications for using oxytocin therapeutically in conditions where social touch is unpleasant. Funding: Key Technological Projects of Guangdong Province grant 2018B030335001. Clinical trial number: NCT05265806.


Subject(s)
Touch Perception , Touch , Humans , Emotions/physiology , Oxytocin/pharmacology , Physical Stimulation , Skin , Touch/physiology , Touch Perception/physiology
15.
Mol Psychiatry ; 28(7): 3083-3091, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37185959

ABSTRACT

In recent years ample studies have reported that intranasal administration of the neuropeptide oxytocin can facilitate social motivation and cognition in healthy and clinical populations. However, it is still unclear how effects are mediated since intranasally administered oxytocin can both directly enter the brain (nose to brain) and increase peripheral vascular concentrations (nose to blood). The relative functional contributions of these routes are not established and have received insufficient attention in the field. The current study used vasoconstrictor pretreatment to prevent intranasal oxytocin (24 IU) from increasing peripheral concentrations and measured effects on both resting-state neural (electroencephalography) and physiological responses (electrocardiogram, electrogastrogram and skin conductance). Results demonstrated that intranasal oxytocin alone produced robust and widespread increases of delta-beta cross-frequency coupling (CFC) from 30 min post-treatment but did not influence peripheral physiological measures. As predicted, vasoconstrictor pretreatment greatly reduced the normal increase in peripheral oxytocin concentrations and, importantly, abolished the majority of intranasal oxytocin effects on delta-beta CFC. Furthermore, time-dependent positive correlations were found between increases in plasma oxytocin concentrations and corresponding increases in delta-beta CFC following oxytocin treatment alone. Our findings suggest a critical role of peripheral vasculature-mediated routes on neural effects of exogenous oxytocin administration with important translational implications for its use as an intervention in psychiatric disorders.


Subject(s)
Nose , Oxytocin , Humans , Oxytocin/pharmacology , Administration, Intranasal , Brain , Vasoconstrictor Agents , Double-Blind Method
16.
Neuroendocrinology ; 113(9): 957-970, 2023.
Article in English | MEDLINE | ID: mdl-37231816

ABSTRACT

INTRODUCTION: Oxytocin (OXT) is proposed as a potential therapeutic peptide for social dysfunction due to its modulatory actions on socioemotional regulation in humans. While the majority of studies have used intranasal OXT administration, we have recently shown that oral (lingual spray), but not intranasal, administration can significantly enhance activity of the brain reward system in response to emotional faces in males; however, its effects on females are unknown. METHODS: Seventy healthy females participated in the current randomized, placebo-controlled, pharmaco-imaging clinical trial, and the results were compared with our previous data from 75 males who underwent the same protocol. Participants were randomly assigned to OXT (24 IU) or placebo (PLC) groups and completed an implicit emotional face paradigm (angry/fear/happy/neutral) where they were only required to identify face gender. RESULTS: In line with previous results in males, oral OXT significantly increased plasma OXT concentration changes and enhanced putamen responses to all emotional faces compared to PLC in females. Additionally, OXT increased left amygdala activity to happy and angry faces and enhanced putamen-superior temporal gyrus functional coupling during processing of happy faces in females which was significantly different from males. CONCLUSION: Our findings suggest that oral OXT enhances responses in both reward and emotional-processing networks in females as well as males, and additionally, in females, it strengthens coupling between reward and social cognition regions.


Subject(s)
Emotions , Oxytocin , Male , Humans , Female , Oxytocin/pharmacology , Emotions/physiology , Fear/physiology , Brain/diagnostic imaging , Reward , Administration, Intranasal , Magnetic Resonance Imaging , Double-Blind Method
17.
J Neurosci ; 43(3): 472-483, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36639890

ABSTRACT

Social deficits and dysregulations in dopaminergic midbrain-striato-frontal circuits represent transdiagnostic symptoms across psychiatric disorders. Animal models suggest that interactions between the dopamine (DA) and renin-angiotensin system (RAS) may modulate learning and reward-related processes. The present study therefore examined the behavioral and neural effects of the Angiotensin II type 1 receptor (AT1R) antagonist losartan on social reward and punishment processing in humans. A preregistered randomized double-blind placebo-controlled between-subject pharmacological design was combined with a social incentive delay (SID) functional MRI (fMRI) paradigm during which subjects could avoid social punishment or gain social reward. Healthy volunteers received a single-dose of losartan (50 mg, n = 43, female = 17) or placebo (n = 44, female = 20). We evaluated reaction times (RTs) and emotional ratings as behavioral and activation and functional connectivity as neural outcomes. Relative to placebo, losartan modulated the reaction time and arousal differences between social punishment and social reward. On the neural level the losartan-enhanced motivational salience of social rewards was accompanied by stronger ventral striatum-prefrontal connectivity during reward anticipation. Losartan increased the reward-neutral difference in the ventral tegmental area (VTA) and attenuated VTA associated connectivity with the bilateral insula in response to punishment during the outcome phase. Thus, losartan modulated approach-avoidance motivation and emotional salience during social punishment versus social reward via modulating distinct core nodes of the midbrain-striato-frontal circuits. The findings document a modulatory role of the renin-angiotensin system in these circuits and associated social processes, suggesting a promising treatment target to alleviate social dysregulations.SIGNIFICANCE STATEMENT Social deficits and anhedonia characterize several mental disorders and have been linked to the midbrain-striato-frontal circuits of the brain. Based on initial findings from animal models we here combine the pharmacological blockade of the Angiotensin II type 1 receptor (AT1R) via losartan with functional MRI (fMRI) to demonstrate that AT1R blockade enhances the motivational salience of social rewards and attenuates the negative impact of social punishment via modulating the communication in the midbrain-striato-frontal circuits in humans. The findings demonstrate for the first time an important role of the AT1R in social reward processing in humans and render the AT1R as promising novel treatment target for social and motivational deficits in mental disorders.


Subject(s)
Losartan , Mesencephalon , Motivation , Animals , Female , Humans , Angiotensins/antagonists & inhibitors , Dopamine/pharmacology , Losartan/pharmacology , Magnetic Resonance Imaging , Mesencephalon/diagnostic imaging , Mesencephalon/drug effects , Motivation/drug effects , Punishment/psychology , Receptor, Angiotensin, Type 1/drug effects , Reward
18.
Article in English | MEDLINE | ID: mdl-36623581

ABSTRACT

Major depression (MDD) and generalized anxiety disorder (GAD) have become one of the leading global causes of disability and both are characterized by marked interpersonal and social impairments. However, despite high comorbidity and overlapping social-emotional deficits, it remains unclear whether MDD and GAD share a common neural basis during interpersonal processing. In the present study, we combined an emotional face processing paradigm with fMRI and dimensional and categorical analyses in a sample of unmedicated MDD and GAD patients (N = 72) as well as healthy controls (N = 35). No group differences were found in categorical analyses. However, the dimensional analyses revealed that dorsolateral prefrontal cortex (dlPFC) reactivity to sad facial expressions was positively associated with depression symptom load, yet negatively associated with anxiety symptom load in the entire sample. On the network level depression symptom load was positively associated with functional connectivity between the bilateral amygdala and a widespread network including the anterior cingulate and insular cortex. Together, these findings suggest that the dlPFC - engaged in cognitive and emotional processing - exhibits symptom- and emotion-specific alteration during interpersonal processing. Dysregulated communication between the amygdala and core regions of the salience network may represent depression-specific neural dysregulations.


Subject(s)
Depression , Depressive Disorder, Major , Humans , Depression/diagnostic imaging , Emotions/physiology , Anxiety/diagnostic imaging , Anxiety Disorders , Depressive Disorder, Major/diagnostic imaging , Magnetic Resonance Imaging , Brain Mapping , Facial Expression
19.
Neural Netw ; 158: 99-110, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36446159

ABSTRACT

Characterizing individualized spatio-temporal patterns of functional brain networks (FBNs) via functional magnetic resonance imaging (fMRI) provides a foundation for understanding complex brain function. Although previous studies have achieved promising performances based on either shallow or deep learning models, there is still much space to improve the accuracy of spatio-temporal pattern characterization of FBNs by optimally integrating the four-dimensional (4D) features of fMRI. In this study, we introduce a novel Spatio-Temporal Attention 4D Convolutional Neural Network (STA-4DCNN) model to characterize individualized spatio-temporal patterns of FBNs. Particularly, STA-4DCNN is composed of two subnetworks, in which the first Spatial Attention 4D CNN (SA-4DCNN) models the spatio-temporal features of 4D fMRI data and then characterizes the spatial pattern of FBNs, and the second Temporal Guided Attention Network (T-GANet) further characterizes the temporal pattern of FBNs under the guidance of the spatial pattern together with 4D fMRI data. We evaluate the proposed STA-4DCNN on seven different task fMRI and one resting state fMRI datasets from the publicly released Human Connectome Project. The experimental results demonstrate that STA-4DCNN has superior ability and generalizability in characterizing individualized spatio-temporal patterns of FBNs when compared to other state-of-the-art models. We further apply STA-4DCNN on another independent ABIDE I resting state fMRI dataset including both autism spectrum disorder (ASD) and typical developing (TD) subjects, and successfully identify abnormal spatio-temporal patterns of FBNs in ASD compared to TD. In general, STA-4DCNN provides a powerful tool for FBN characterization and for clinical applications on brain disease characterization at the individual level.


Subject(s)
Autism Spectrum Disorder , Connectome , Humans , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Connectome/methods , Neural Networks, Computer , Magnetic Resonance Imaging/methods
20.
Psychoradiology ; 3: kkad005, 2023.
Article in English | MEDLINE | ID: mdl-38666122

ABSTRACT

Background: Autism spectrum disorder (ASD) is associated with altered brain development, but it is unclear which specific structural changes may serve as potential diagnostic markers, particularly in young children at the age when symptoms become fully established. Furthermore, such brain markers need to meet the requirements of precision medicine and be accurate in aiding diagnosis at an individual rather than only a group level. Objective: This study aimed to identify and model brain-wide differences in structural connectivity using diffusion tensor imaging (DTI) in young ASD and typically developing (TD) children. Methods: A discovery cohort including 93 ASD and 26 TD children and two independent validation cohorts including 12 ASD and 9 TD children from three different cities in China were included. Brain-wide (294 regions) structural connectivity was measured using DTI (fractional anisotropy, FA) together with symptom severity and cognitive development. A connection matrix was constructed for each child for comparisons between ASD and TD groups. Pattern classification was performed on the discovery dataset and the resulting model was tested on the two independent validation datasets. Results: Thirty-three structural connections showed increased FA in ASD compared to TD children and associated with both autistic symptom severity and impaired general cognitive development. The majority (29/33) involved the frontal lobe and comprised five different networks with functional relevance to default mode, motor control, social recognition, language and reward. Overall, classification achieved very high accuracy of 96.77% in the discovery dataset, and 91.67% and 88.89% in the two independent validation datasets. Conclusions: Identified structural connectivity differences primarily involving the frontal cortex can very accurately distinguish novel individual ASD from TD children and may therefore represent a robust early brain biomarker which can address the requirements of precision medicine.

SELECTION OF CITATIONS
SEARCH DETAIL
...