Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Clin Psychopharmacol ; 32(2): 150-157, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37470999

ABSTRACT

Prescription and illicit opioid use are a public health crisis, with the landscape shifting to fentanyl use. Since fentanyl is 100-fold more potent than morphine, its use is associated with a higher risk of fatal overdose that can be remediated through naloxone (Narcan) administration. However, recent reports indicate that xylazine, an anesthetic, is increasingly detected in accidental fentanyl overdose deaths. Anecdotal reports suggest that xylazine may prolong the fentanyl "high," alter the onset of fentanyl withdrawal, and increase resistance to naloxone-induced reversal of overdose. To date, no preclinical studies have evaluated the impacts of xylazine on fentanyl self-administration (SA; 2.5 µg/kg/infusion) or withdrawal to our knowledge. We established a rat model of xylazine/fentanyl co-SA and withdrawal and evaluated outcomes as a function of biological sex. When administered alone, chronic xylazine (2.5 mg/kg, intraperitoneal) induced unique sex-specific withdrawal symptomatology, whereby females showed delayed onset of signs and a possible enhancement of sensitivity to the motor-suppressing effects of xylazine. Xylazine reduced fentanyl consumption in both male and female rats regardless of whether it was experimenter-administered or added to the intravenous fentanyl product (0.05, 0.10, and 0.5 mg/kg/infusion) when compared to fentanyl SA alone. Interestingly, this effect was dose-dependent when self-administered intravenously. Naloxone (0.1 mg/kg, subcutaneous injection) did not increase somatic signs of fentanyl withdrawal, regardless of the inclusion of xylazine in the fentanyl infusion in either sex; however, somatic signs of withdrawal were higher across time points in females after xylazine/fentanyl co-SA regardless of naloxone exposure as compared to females following fentanyl SA alone. Together, these results indicate that xylazine/fentanyl co-SA dose-dependently suppressed fentanyl intake in both sexes and induced a unique withdrawal syndrome in females that was not altered by acute naloxone treatment. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Drug Overdose , Substance Withdrawal Syndrome , Rats , Male , Female , Animals , Naloxone/pharmacology , Naloxone/therapeutic use , Fentanyl/pharmacology , Xylazine/pharmacology , Narcotic Antagonists , Morphine , Substance Withdrawal Syndrome/drug therapy , Analgesics, Opioid/therapeutic use
2.
Drug Alcohol Depend ; 252: 110983, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37778097

ABSTRACT

Rates of tobacco and alcohol use in women are rising, and women are more vulnerable than men to escalating tobacco and alcohol use. Many women use hormonal birth control, with the oral contraceptive pill being the most prevalent. Oral contraceptives contain both a progestin (synthetic progesterone) and a synthetic estrogen (ethinyl estradiol; EE) and are contraindicated for women over 35 years who smoke. Despite this, no studies have examined how synthetic contraceptive hormones impact this pattern of polysubstance use in females. To address this critical gap in the field, we treated ovary-intact female rats with either sesame oil (vehicle), the progestin levonorgestrel (LEVO; contained in formulations such as Alesse®), or the combination of EE+LEVO in addition to either undergoing single (nicotine or saline) or polydrug (nicotine and ethanol; EtOH) self-administration (SA) in a sequential use model. Rats preferred EtOH over water following extended EtOH drinking experience as well as after nicotine or saline SA experience, and rats undergoing only nicotine SA (water controls) consumed more nicotine as compared to rats co-using EtOH and nicotine. Importantly, this effect was occluded in groups treated with contraceptive hormones. In the sequential use group, both LEVO alone and the EE+LEVO combination occluded the ability of nicotine to decrease EtOH consumption. Interestingly, demand experiments suggest an economic substitute effect between nicotine and EtOH. Together, we show that chronic synthetic hormone exposure impacts nicotine and EtOH sequential use, demonstrating the crucial need to understand how chronic use of different contraceptive formulations alter patterns of polydrug use in women.


Subject(s)
Nicotine , Ovary , Female , Humans , Animals , Rats , Nicotine/pharmacology , Contraceptives, Oral, Combined/pharmacology , Contraceptives, Oral, Combined/therapeutic use , Estradiol , Progestins/pharmacology , Follicle Stimulating Hormone , Ethanol/pharmacology , Water/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...