Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Exp Med Biol ; 1188: 251-266, 2019.
Article in English | MEDLINE | ID: mdl-31820393

ABSTRACT

Tumor cells and the tumor ecosystem rapidly evolve in response to therapy. This tumor evolution results in the rapid emergence of drug resistance that limits the magnitude and duration of response to therapy including chemotherapy, targeted therapy, and immunotherapy. Thus, there is an urgent need to understand and interdict tumor evolution to improve patient benefit to therapy. Reverse phase protein array (RPPA) provides a powerful tool to evaluate and develop approaches to target the processes underlying one form of tumor evolution: adaptive evolution. Tumor cells and the tumor microenvironment rapidly evolve through rewiring of protein networks to bypass the effects of therapy. In this review, we present the concepts underlying adaptive resistance and use of RPPA in understanding resistance mechanisms and identification of effective drug combinations. We further demonstrate that this novel information is resulting in biomarker-driven trials aimed at targeting adaptive resistance and improving patient outcomes.


Subject(s)
Drug Resistance, Neoplasm , Neoplasms , Protein Array Analysis , Biological Evolution , Drug Resistance, Neoplasm/genetics , Humans , Immunotherapy , Tumor Microenvironment
2.
Expert Rev Proteomics ; 16(10): 841-850, 2019 10.
Article in English | MEDLINE | ID: mdl-31512530

ABSTRACT

Introduction: Due to the relatively low mutation rate and high frequency of copy number variation, finding actionable genetic drivers of high-grade serous carcinoma (HGSC) is a challenging task. Furthermore, emerging studies show that genetic alterations are frequently poorly represented at the protein level adding a layer of complexity. With improvements in large-scale proteomic technologies, proteomics studies have the potential to provide robust analysis of the pathways driving high HGSC behavior. Areas covered: This review summarizes recent large-scale proteomics findings across adequately sized ovarian cancer sample sets. Key words combined with 'ovarian cancer' including 'proteomics', 'proteogenomic', 'reverse-phase protein array', 'mass spectrometry', and 'adaptive response', were used to search PubMed. Expert opinion: Proteomics analysis of HGSC as well as their adaptive responses to therapy can uncover new therapeutic liabilities, which can reduce the emergence of drug resistance and potentially improve patient outcomes. There is a pressing need to better understand how the genomic and epigenomic heterogeneity intrinsic to ovarian cancer is reflected at the protein level and how this information could be used to improve patient outcomes.


Subject(s)
Ovarian Neoplasms/genetics , Proteome/genetics , Proteomics , DNA Copy Number Variations/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Mutation/genetics , Mutation Rate , Ovarian Neoplasms/drug therapy
3.
Cancer Discov ; 9(5): 617-627, 2019 05.
Article in English | MEDLINE | ID: mdl-30837243

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) develops a pronounced stromal response reflecting an aberrant wound-healing process. This stromal reaction features transdifferentiation of tissue-resident pancreatic stellate cells (PSC) into activated cancer-associated fibroblasts, a process induced by PDAC cells but of unclear significance for PDAC progression. Here, we show that PSCs undergo a dramatic lipid metabolic shift during differentiation in the context of pancreatic tumorigenesis, including remodeling of the intracellular lipidome and secretion of abundant lipids in the activated, fibroblastic state. Specifically, stroma-derived lysophosphatidylcholines support PDAC cell synthesis of phosphatidylcholines, key components of cell membranes, and also facilitate production of the potent wound-healing mediator lysophosphatidic acid (LPA) by the extracellular enzyme autotaxin, which is overexpressed in PDAC. The autotaxin-LPA axis promotes PDAC cell proliferation, migration, and AKT activation, and genetic or pharmacologic autotaxin inhibition suppresses PDAC growth in vivo. Our work demonstrates how PDAC cells exploit the local production of wound-healing mediators to stimulate their own growth and migration. SIGNIFICANCE: Our work highlights an unanticipated role for PSCs in producing the oncogenic LPA signaling lipid and demonstrates how PDAC tumor cells co-opt the release of wound-healing mediators by neighboring PSCs to promote their own proliferation and migration.See related commentary by Biffi and Tuveson, p. 578.This article is highlighted in the In This Issue feature, p. 565.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Lysophosphatidylcholines/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Stellate Cells/metabolism , Phosphoric Diester Hydrolases/metabolism , Stromal Cells/metabolism , Animals , Carcinoma, Pancreatic Ductal/pathology , Cell Movement , Cell Proliferation , Disease Models, Animal , Disease Progression , Female , Humans , Male , Mice, Inbred C57BL , Mice, Nude , Pancreatic Neoplasms/pathology , Pancreatic Stellate Cells/pathology , Signal Transduction , Stromal Cells/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Cell Rep ; 26(3): 608-623.e6, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30650355

ABSTRACT

The tumor microenvironment plays a critical role in tumor growth, progression, and therapeutic resistance, but interrogating the role of specific tumor-stromal interactions on tumorigenic phenotypes is challenging within in vivo tissues. Here, we tested whether three-dimensional (3D) bioprinting could improve in vitro models by incorporating multiple cell types into scaffold-free tumor tissues with defined architecture. We generated tumor tissues from distinct subtypes of breast or pancreatic cancer in relevant microenvironments and demonstrate that this technique can model patient-specific tumors by using primary patient tissue. We assess intrinsic, extrinsic, and spatial tumorigenic phenotypes in bioprinted tissues and find that cellular proliferation, extracellular matrix deposition, and cellular migration are altered in response to extrinsic signals or therapies. Together, this work demonstrates that multi-cell-type bioprinted tissues can recapitulate aspects of in vivo neoplastic tissues and provide a manipulable system for the interrogation of multiple tumorigenic endpoints in the context of distinct tumor microenvironments.


Subject(s)
Bioprinting/methods , Humans , Phenotype , Tumor Microenvironment
5.
Nat Commun ; 9(1): 3815, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30232459

ABSTRACT

Intratumoral heterogeneity in cancers arises from genomic instability and epigenomic plasticity and is associated with resistance to cytotoxic and targeted therapies. We show here that cell-state heterogeneity, defined by differentiation-state marker expression, is high in triple-negative and basal-like breast cancer subtypes, and that drug tolerant persister (DTP) cell populations with altered marker expression emerge during treatment with a wide range of pathway-targeted therapeutic compounds. We show that MEK and PI3K/mTOR inhibitor-driven DTP states arise through distinct cell-state transitions rather than by Darwinian selection of preexisting subpopulations, and that these transitions involve dynamic remodeling of open chromatin architecture. Increased activity of many chromatin modifier enzymes, including BRD4, is observed in DTP cells. Co-treatment with the PI3K/mTOR inhibitor BEZ235 and the BET inhibitor JQ1 prevents changes to the open chromatin architecture, inhibits the acquisition of a DTP state, and results in robust cell death in vitro and xenograft regression in vivo.


Subject(s)
Breast Neoplasms/pathology , Cell Differentiation , Cell Plasticity , Drug Resistance, Neoplasm , Animals , Antineoplastic Agents/therapeutic use , Azepines/pharmacology , Breast Neoplasms/drug therapy , Cell Line, Tumor , Chromatin/metabolism , Female , Humans , Mice, Inbred NOD , Mice, SCID , Molecular Targeted Therapy , Triazoles/pharmacology , Triple Negative Breast Neoplasms/pathology
6.
Nat Commun ; 8(1): 1728, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29170413

ABSTRACT

Intratumoral phenotypic heterogeneity has been described in many tumor types, where it can contribute to drug resistance and disease recurrence. We analyzed ductal and neuroendocrine markers in pancreatic ductal adenocarcinoma, revealing heterogeneous expression of the neuroendocrine marker Synaptophysin within ductal lesions. Higher percentages of Cytokeratin-Synaptophysin dual positive tumor cells correlate with shortened disease-free survival. We observe similar lineage marker heterogeneity in mouse models of pancreatic ductal adenocarcinoma, where lineage tracing indicates that Cytokeratin-Synaptophysin dual positive cells arise from the exocrine compartment. Mechanistically, MYC binding is enriched at neuroendocrine genes in mouse tumor cells and loss of MYC reduces ductal-neuroendocrine lineage heterogeneity, while deregulated MYC expression in KRAS mutant mice increases this phenotype. Neuroendocrine marker expression is associated with chemoresistance and reducing MYC levels decreases gemcitabine-induced neuroendocrine marker expression and increases chemosensitivity. Altogether, we demonstrate that MYC facilitates ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma, contributing to poor survival and chemoresistance.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins c-myc/metabolism , Animals , Antineoplastic Agents/therapeutic use , Carcinoma, Neuroendocrine/drug therapy , Carcinoma, Neuroendocrine/metabolism , Carcinoma, Neuroendocrine/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Cell Differentiation , Cell Line, Tumor , Cell Lineage , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Drug Resistance, Neoplasm , Female , Heterografts , Humans , Keratins/metabolism , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Neoplasm Transplantation , Neuroendocrine Cells/metabolism , Neuroendocrine Cells/pathology , Pancreatic Neoplasms/drug therapy , Prognosis , Synaptophysin/metabolism , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL