Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 7(10)2022 05 23.
Article in English | MEDLINE | ID: mdl-35603790

ABSTRACT

Insulin secretion from pancreatic ß cells is essential for glucose homeostasis. An insufficient response to the demand for insulin results in diabetes. We previously showed that ß cell-specific deletion of Zfp148 (ß-Zfp148KO) improves glucose tolerance and insulin secretion in mice. Here, we performed Ca2+ imaging of islets from ß­Zfp148KO and control mice fed both a chow and a Western-style diet. ß-Zfp148KO islets demonstrated improved sensitivity and sustained Ca2+ oscillations in response to elevated glucose levels. ß-Zfp148KO islets also exhibited elevated sensitivity to amino acid-induced Ca2+ influx under low glucose conditions, suggesting enhanced mitochondrial phosphoenolpyruvate-dependent (PEP-dependent), ATP-sensitive K+ channel closure, independent of glycolysis. RNA-Seq and proteomics of ß-Zfp148KO islets revealed altered levels of enzymes involved in amino acid metabolism (specifically, SLC3A2, SLC7A8, GLS, GLS2, PSPH, PHGDH, and PSAT1) and intermediary metabolism (namely, GOT1 and PCK2), consistent with altered PEP cycling. In agreement with this, ß-Zfp148KO islets displayed enhanced insulin secretion in response to l-glutamine and activation of glutamate dehydrogenase. Understanding pathways controlled by ZFP148 may provide promising strategies for improving ß cell function that are robust to the metabolic challenge imposed by a Western diet.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Animals , Calcium/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Glucose/metabolism , Glutamine/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Mice , Nutrients , Transcription Factors/metabolism
2.
J Lipid Res ; 53(8): 1493-501, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22628617

ABSTRACT

Nonalchoholic fatty liver disease (NAFLD) is the most common cause of liver dysfunction and is associated with metabolic diseases, including obesity, insulin resistance, and type 2 diabetes. We mapped a quantitative trait locus (QTL) for NAFLD to chromosome 17 in a cross between C57BL/6 (B6) and BTBR mouse strains made genetically obese with the Lep(ob/ob) mutation. We identified Tsc2 as a gene underlying the chromosome 17 NAFLD QTL. Tsc2 functions as an inhibitor of mammalian target of rapamycin, which is involved in many physiological processes, including cell growth, proliferation, and metabolism. We found that Tsc2(+/-) mice have increased lipogenic gene expression in the liver in an insulin-dependent manner. The coding single nucleotide polymorphism between the B6 and BTBR strains leads to a change in the ability to inhibit the expression of lipogenic genes and de novo lipogenesis in AML12 cells and to promote the proliferation of Ins1 cells. This difference is due to a different affinity of binding to Tsc1, which affects the stability of Tsc2.


Subject(s)
Fatty Liver/genetics , Quantitative Trait Loci/genetics , Tumor Suppressor Proteins/genetics , Alleles , Animals , Cell Proliferation , Chromosomes, Mammalian/genetics , Fatty Liver/metabolism , Fatty Liver/pathology , Gene Expression Regulation , Insulin-Secreting Cells/pathology , Lipogenesis/genetics , Liver/metabolism , Mice , Non-alcoholic Fatty Liver Disease , Species Specificity , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Triglycerides/metabolism , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/metabolism
3.
PLoS Genet ; 6(5): e1000932, 2010 May 06.
Article in English | MEDLINE | ID: mdl-20463879

ABSTRACT

Genome-wide association studies (GWAS) have demonstrated the ability to identify the strongest causal common variants in complex human diseases. However, to date, the massive data generated from GWAS have not been maximally explored to identify true associations that fail to meet the stringent level of association required to achieve genome-wide significance. Genetics of gene expression (GGE) studies have shown promise towards identifying DNA variations associated with disease and providing a path to functionally characterize findings from GWAS. Here, we present the first empiric study to systematically characterize the set of single nucleotide polymorphisms associated with expression (eSNPs) in liver, subcutaneous fat, and omental fat tissues, demonstrating these eSNPs are significantly more enriched for SNPs that associate with type 2 diabetes (T2D) in three large-scale GWAS than a matched set of randomly selected SNPs. This enrichment for T2D association increases as we restrict to eSNPs that correspond to genes comprising gene networks constructed from adipose gene expression data isolated from a mouse population segregating a T2D phenotype. Finally, by restricting to eSNPs corresponding to genes comprising an adipose subnetwork strongly predicted as causal for T2D, we dramatically increased the enrichment for SNPs associated with T2D and were able to identify a functionally related set of diabetes susceptibility genes. We identified and validated malic enzyme 1 (Me1) as a key regulator of this T2D subnetwork in mouse and provided support for the association of this gene to T2D in humans. This integration of eSNPs and networks provides a novel approach to identify disease susceptibility networks rather than the single SNPs or genes traditionally identified through GWAS, thereby extracting additional value from the wealth of data currently being generated by GWAS.


Subject(s)
Adipose Tissue/metabolism , Diabetes Mellitus, Type 2/genetics , Gene Expression , Genome-Wide Association Study , Liver/metabolism , Polymorphism, Single Nucleotide , Animals , Cohort Studies , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Proc Natl Acad Sci U S A ; 104(10): 4036-41, 2007 Mar 06.
Article in English | MEDLINE | ID: mdl-17360473

ABSTRACT

Progress toward the understanding and management of human colon cancer can be significantly advanced if appropriate experimental platforms become available. We have investigated whether a rat model carrying a knockout allele in the gatekeeper gene Adenomatous polyposis coli (Apc) recapitulates familial colon cancer of the human more closely than existing murine models. We have established a mutagen-induced nonsense allele of the rat Apc gene on an inbred F344/NTac (F344) genetic background. Carriers of this mutant allele develop multiple neoplasms with a distribution between the colon and small intestine that closely simulates that found in human familial adenomatous polyposis patients. To distinguish this phenotype from the predominantly small intestinal phenotype found in most Apc-mutant mouse strains, this strain has been designated the polyposis in the rat colon (Pirc) kindred. The Pirc rat kindred provides several unique and favorable features for the study of colon cancer. Tumor-bearing Pirc rats can live at least 17 months, carrying a significant colonic tumor burden. These tumors can be imaged both by micro computed tomography scanning and by classical endoscopy, enabling longitudinal studies of tumor genotype and phenotype as a function of response to chemopreventive and therapeutic regimes. The metacentric character of the rat karyotype, like that of the human and unlike the acrocentric mouse, has enabled us to demonstrate that the loss of the wild-type Apc allele in tumors does not involve chromosome loss. We believe that the Pirc rat kindred can address many of the current gaps in the modeling of human colon cancer.


Subject(s)
Adenomatous Polyposis Coli Protein/physiology , Colonic Neoplasms/genetics , Genes, APC , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Celecoxib , Colonic Neoplasms/metabolism , Disease Models, Animal , Female , Homozygote , Humans , Loss of Heterozygosity , Male , Mice , Pyrazoles/pharmacology , Rats , Rats, Inbred F344 , Sulfonamides/pharmacology
5.
BMC Genomics ; 8: 80, 2007 Mar 23.
Article in English | MEDLINE | ID: mdl-17381838

ABSTRACT

BACKGROUND: Aging has been associated with widespread changes at the gene expression level in multiple mammalian tissues. We have used high density oligonucleotide arrays and novel statistical methods to identify specific transcriptional classes that may uncover biological processes that play a central role in mammalian aging. RESULTS: We identified 712 transcripts that are differentially expressed in young (5 month old) and old (25-month old) mouse skeletal muscle. Caloric restriction (CR) completely or partially reversed 87% of the changes in expression. Examination of individual genes revealed a transcriptional profile indicative of increased p53 activity in the older muscle. To determine whether the increase in p53 activity is associated with transcriptional activation of apoptotic targets, we performed RT-PCR on four well known mediators of p53-induced apoptosis: puma, noxa, tnfrsf10b and bok. Expression levels for these proapoptotic genes increased significantly with age (P < 0.05), while CR significantly lowered expression levels for these genes as compared to control fed old mice (P < 0.05). Age-related induction of p53-related genes was observed in multiple tissues, but was not observed in young SOD2+/- and GPX4+/- mice, suggesting that oxidative stress does not induce the expression of these genes. Western blot analysis confirmed that protein levels for both p21 and GADD45a, two established transcriptional targets of p53, were higher in the older muscle tissue. CONCLUSION: These observations support a role for p53-mediated transcriptional program in mammalian aging and suggest that mechanisms other than reactive oxygen species are involved in the age-related transcriptional activation of p53 targets.


Subject(s)
Aging/genetics , Gene Expression Profiling , Placenta/physiology , Prolactin/analogs & derivatives , Prolactin/physiology , Transcription, Genetic , Tumor Suppressor Protein p53/genetics , Animals , Cloning, Molecular , DNA, Complementary , Embryonic Development , Female , Goats , Pregnancy , Prolactin/genetics , RNA, Messenger/genetics , Recombinant Proteins/metabolism
6.
Am J Physiol Endocrinol Metab ; 292(3): E936-45, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17132824

ABSTRACT

Insulin resistance is a common feature of obesity. BTBR mice have more fat mass than most other inbred mouse strains. On a chow diet, BTBR mice have elevated insulin levels relative to the C57BL/6J (B6) strain. Male F1 progeny of a B6 x BTBR cross are insulin resistant. Previously, we reported insulin resistance in isolated muscle and in isolated adipocytes in this strain. Whereas the muscle insulin resistance was observed only in male F1 mice, adipocyte insulin resistance was also present in male BTBR mice. We examined in vivo mechanisms of insulin resistance with the hyperinsulinemic euglycemic clamp technique. At 10 wk of age, BTBR and F1 mice had a >30% reduction in whole body glucose disposal primarily due to insulin resistance in heart, soleus muscle, and adipose tissue. The increased adipose tissue mass and decreased muscle mass in BTBR and F1 mice were negatively and positively correlated with whole body glucose disposal, respectively. Genes involved in focal adhesion, actin cytoskeleton, and inflammation were more highly expressed in BTBR and F1 than in B6 adipose tissue. The BTBR and F1 mice have higher levels of testosterone, which may be related to the pathological changes in adipose tissue that lead to systemic insulin resistance. Despite profound peripheral insulin resistance, BTBR and F1 mice retained hepatic insulin sensitivity. These studies reveal a genetic difference in body composition that correlates with large differences in peripheral insulin sensitivity.


Subject(s)
Abdominal Fat , Insulin Resistance , Insulin/blood , Liver/metabolism , Obesity/metabolism , Abdominal Fat/metabolism , Animals , Body Composition , Female , Gene Expression , Glucose/metabolism , Glucose Clamp Technique , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Obesity/blood
7.
J Lipid Res ; 47(12): 2668-80, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17005996

ABSTRACT

Stearoyl-coenzyme A desaturase 1-deficient (SCD1(-/-)) mice have impaired MUFA synthesis. When maintained on a very low-fat (VLF) diet, SCD1(-/-) mice developed severe hypercholesterolemia, characterized by an increase in apolipoprotein B (apoB)-containing lipoproteins and the appearance of lipoprotein X. The rate of LDL clearance was decreased in VLF SCD1(-/-) mice relative to VLF SCD1(+/+) mice, indicating that reduced apoB-containing lipoprotein clearance contributed to the hypercholesterolemia. Additionally, HDL-cholesterol was dramatically reduced in these mice. The presence of increased plasma bile acids, bilirubin, and aminotransferases in the VLF SCD1(-/-) mice is indicative of cholestasis. Supplementation of the VLF diet with MUFA- and PUFA-rich canola oil, but not saturated fat-rich hydrogenated coconut oil, prevented these plasma phenotypes. However, dietary oleate was not as effective as canola oil in reducing LDL-cholesterol, signifying a role for dietary PUFA deficiency in the development of this phenotype. These results indicate that the lack of SCD1 results in an increased requirement for dietary unsaturated fat to compensate for impaired MUFA synthesis and to prevent hypercholesterolemia and hepatic dysfunction. Therefore, endogenous MUFA synthesis is essential during dietary unsaturated fat insufficiency and influences the dietary requirement of PUFA.


Subject(s)
Cholestasis/etiology , Diet, Fat-Restricted/adverse effects , Dietary Carbohydrates/administration & dosage , Hypercholesterolemia/etiology , Stearoyl-CoA Desaturase/deficiency , Animals , Cholestasis/blood , Cholestasis/metabolism , Cholestasis/prevention & control , Dietary Fats, Unsaturated/administration & dosage , Female , Hypercholesterolemia/blood , Hypercholesterolemia/metabolism , Hypercholesterolemia/prevention & control , Lipid Metabolism , Lipids/blood , Lipoproteins, LDL/blood , Lipoproteins, LDL/metabolism , Liver/metabolism , Liver Glycogen/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Stearoyl-CoA Desaturase/genetics , Triglycerides/blood , Triglycerides/metabolism
9.
Proc Natl Acad Sci U S A ; 99(17): 11482-6, 2002 Aug 20.
Article in English | MEDLINE | ID: mdl-12177411

ABSTRACT

Stearoyl-CoA desaturase (SCD) is a central lipogenic enzyme catalyzing the synthesis of monounsaturated fatty acids, mainly oleate (C18:1) and palmitoleate (C16:1), which are components of membrane phospholipids, triglycerides, wax esters, and cholesterol esters. Several SCD isoforms (SCD1-3) exist in the mouse. Here we show that mice with a targeted disruption of the SCD1 isoform have reduced body adiposity, increased insulin sensitivity, and are resistant to diet-induced weight gain. The protection from obesity involves increased energy expenditure and increased oxygen consumption. Compared with the wild-type mice the SCD1-/- mice have increased levels of plasma ketone bodies but reduced levels of plasma insulin and leptin. In the SCD1-/- mice, the expression of several genes of lipid oxidation are up-regulated, whereas lipid synthesis genes are down-regulated. These observations suggest that a consequence of SCD1 deficiency is an activation of lipid oxidation in addition to reduced triglyceride synthesis and storage.


Subject(s)
Adipose Tissue/anatomy & histology , Dietary Fats , Obesity/prevention & control , Stearoyl-CoA Desaturase/deficiency , Animals , Blood Glucose/metabolism , Body Weight , Female , Kinetics , Male , Mice , Mice, Knockout , Mice, SCID , Oxygen Consumption , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...