Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Genomics ; 23(1): 747, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36357860

ABSTRACT

BACKGROUND: Understanding the micro--evolutionary response of populations to demographic declines is a major goal in evolutionary and conservation biology. In small populations, genetic drift can lead to an accumulation of deleterious mutations, which will increase the risk of extinction. However, demographic recovery can still occur after extreme declines, suggesting that natural selection may purge deleterious mutations, even in extremely small populations. The Chatham Island black robin (Petroica traversi) is arguably the most inbred bird species in the world. It avoided imminent extinction in the early 1980s and after a remarkable recovery from a single pair, a second population was established and the two extant populations have evolved in complete isolation since then. Here, we analysed 52 modern and historical genomes to examine the genomic consequences of this extreme bottleneck and the subsequent translocation. RESULTS: We found evidence for two-fold decline in heterozygosity and three- to four-fold increase in inbreeding in modern genomes. Moreover, there was partial support for temporal reduction in total load for detrimental variation. In contrast, compared to historical genomes, modern genomes showed a significantly higher realised load, reflecting the temporal increase in inbreeding. Furthermore, the translocation induced only small changes in the frequency of deleterious alleles, with the majority of detrimental variation being shared between the two populations. CONCLUSION: Our results highlight the dynamics of mutational load in a species that recovered from the brink of extinction, and show rather limited temporal changes in mutational load. We hypothesise that ancestral purging may have been facilitated by population fragmentation and isolation on several islands for thousands of generations and may have already reduced much of the highly deleterious load well before human arrival and introduction of pests to the archipelago. The majority of fixed deleterious variation was shared between the modern populations, but translocation of individuals with low mutational load could possibly mitigate further fixation of high-frequency deleterious variation.


Subject(s)
Genetic Drift , Inbreeding , Humans , Selection, Genetic , Alleles , Genomics , Genetic Variation
2.
Evolution ; 70(1): 154-66, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26683565

ABSTRACT

Inbreeding depression, the reduced fitness of offspring of related individuals, is a central theme in evolutionary biology. Inbreeding effects are influenced by the genetic makeup of a population, which is driven by any history of genetic bottlenecks and genetic drift. The Chatham Island black robin represents a case of extreme inbreeding following two severe population bottlenecks. We tested whether inbreeding measured by a 20-year pedigree predicted variation in fitness among individuals, despite the high mean level of inbreeding and low genetic diversity in this species. We found that paternal and maternal inbreeding reduced fledgling survival and individual inbreeding reduced juvenile survival, indicating that inbreeding depression affects even this highly inbred population. Close inbreeding also reduced survival for fledglings with less-inbred mothers, but unexpectedly improved survival for fledglings with highly inbred mothers. This counterintuitive interaction could not be explained by various potentially confounding variables. We propose a genetic mechanism, whereby a highly inbred chick with a highly inbred parent inherits a "proven" genotype and thus experiences a fitness advantage, which could explain the interaction. The positive and negative effects we found emphasize that continuing inbreeding can have important effects on individual fitness, even in populations that are already highly inbred.


Subject(s)
Genetic Fitness , Inbreeding , Songbirds/physiology , Animals , Conservation of Natural Resources , Female , Longevity , Male , New Zealand , Reproduction , Songbirds/genetics
3.
Evolution ; 68(4): 987-95, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24303793

ABSTRACT

Although evidence of inbreeding depression in wild populations is well established, the impact of genetic purging in the wild remains controversial. The contrasting effects of inbreeding depression, fixation of deleterious alleles by genetic drift, and the purging of deleterious alleles via natural selection mean that predicting fitness outcomes in populations subjected to prolonged bottlenecks is not straightforward. We report results from a long-term pedigree study of arguably the world's most inbred wild species of bird: the Chatham Island black robin Petroica traversi, in which conditions were ideal for purging to occur. Contrary to expectations, black robins showed a strong, negative relationship between inbreeding and juvenile survival, yielding lethal equivalents (2B) of 6.85. We also determined that the negative relationship between inbreeding and survival did not appear to be mediated by levels of ancestral inbreeding and may be attributed in part to unpurged lethal recessives. Although the black robin demographic history provided ideal conditions for genetic purging, our results show no clear evidence of purging in the major life-history trait of juvenile survival. Our results also show no evidence of fixation of deleterious alleles in juvenile survival, but do confirm that continued high levels of contemporary inbreeding in a historically inbred population could lead to additional severe inbreeding depression.


Subject(s)
Inbreeding , Songbirds/genetics , Animals , Genes, Lethal , Genetics, Population , Models, Genetic , Mortality , New Zealand
SELECTION OF CITATIONS
SEARCH DETAIL