Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Mol Ther ; 32(2): 457-468, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38053333

ABSTRACT

CTLA-4 is a crucial immune checkpoint receptor involved in the maintenance of immune homeostasis, tolerance, and tumor control. Antibodies targeting CTLA-4 have been promising treatments for numerous cancers, but the mechanistic basis of their anti-tumoral immune-boosting effects is poorly understood. Although the ctla4 gene also encodes an alternatively spliced soluble variant (sCTLA-4), preclinical/clinical evaluation of anti-CTLA-4-based immunotherapies have not considered the contribution of this isoform. Here, we explore the functional properties of sCTLA-4 and evaluate the efficacy of isoform-specific anti-sCTLA-4 antibody targeting in a murine cancer model. We show that expression of sCTLA-4 by tumor cells suppresses CD8+ T cells in vitro and accelerates growth and experimental metastasis of murine tumors in vivo. These effects were accompanied by modification of the immune infiltrate, notably restraining CD8+ T cells in a non-cytotoxic state. sCTLA-4 blockade with isoform-specific antibody reversed this restraint, enhancing intratumoral CD8+ T cell activation and cytolytic potential, correlating with therapeutic efficacy and tumor control. This previously unappreciated role of sCTLA-4 suggests that the biology and function of multi-gene products of immune checkpoint receptors need to be fully elucidated for improved mechanistic understanding of cancer immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Animals , Mice , Antibodies , CD8-Positive T-Lymphocytes/metabolism , CTLA-4 Antigen/genetics , Neoplasms/genetics , Neoplasms/therapy , Protein Isoforms/genetics
2.
Cancer Res Commun ; 4(1): 118-133, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38147007

ABSTRACT

Squamous cell carcinomas, which arise from the cells that line the mucosal surfaces of the head and neck, represent the most common type of head and neck cancers (HNSCC). Human papillomavirus (HPV) infection has been strongly associated with the development of oropharyngeal cancers, which are cancers that occur in the back of the throat, including the tonsils and base of the tongue. HNSCCs with and without HPV infection have distinct pathology, with HPV-positive patients having higher levels of immune infiltration, activation in the tumor microenvironment and better response to radiation and chemotherapy. It is, however, unclear whether HPV infection in HNSCCs has the potential to activate innate-immune sensing pathways and if these cancers possess intrinsic immunogenicity associated with HPV infection. Here we investigate the innate immune stimulator of interferon genes (STING) pathway and immune responses to STING activation in HNSCCs and uncover fundamental differences in the regulation of this pathway in cell lines versus primary human clinical specimens. We show that while STING is differentially expressed in HPV-positive and -negative HNSCC cell lines, they exhibit a gross functional defect in signaling through this pathway. However, STING activation in immune cell populations generated immune signatures predicted to elicit useful tumoricidal mechanisms. In contrast, IHC analysis of human tissue microarrays revealed enhanced STING expression in HPV-related tumors and high intratumoral expression of STING correlated with increased survival. SIGNIFICANCE: STING is an important innate immune sensor of cytosolic DNA, inducing essential antiviral and antitumoral responses. This research shows that STING expression is enhanced in HPV-positive HNSCC patient tissue, with high intratumoral STING expression correlating with increased survival. In addition, STING activation in immune cell populations augmented antitumoral effects against HNSCCs, suggesting patients may benefit from the use of STING agonists in combination with traditional therapies.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Papillomavirus Infections , Humans , Squamous Cell Carcinoma of Head and Neck/complications , Papillomavirus Infections/complications , Head and Neck Neoplasms/complications , Carcinoma, Squamous Cell/complications , Human Papillomavirus Viruses , Tumor Microenvironment
3.
J Immunother Cancer ; 11(11)2023 11 22.
Article in English | MEDLINE | ID: mdl-37993280

ABSTRACT

Neuroblastoma is the most frequent extracranial childhood tumour but effective treatment with current immunotherapies is challenging due to its immunosuppressive microenvironment. Efforts to date have focused on using immunotherapy to increase tumour immunogenicity and enhance anticancer immune responses, including anti-GD2 antibodies; immune checkpoint inhibitors; drugs which enhance macrophage and natural killer T (NKT) cell function; modulation of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway; and engineering neuroblastoma-targeting chimeric-antigen receptor-T cells. Some of these strategies have strong preclinical foundation and are being tested clinically, although none have demonstrated notable success in treating paediatric neuroblastoma to date. Recently, approaches to overcome heterogeneity of neuroblastoma tumours and treatment resistance are being explored. These include rational combination strategies with the aim of achieving synergy, such as dual targeting of GD2 and tumour-associated macrophages or natural killer cells; GD2 and the B7-H3 immune checkpoint; GD2 and enhancer of zeste-2 methyltransferase inhibitors. Such combination strategies provide opportunities to overcome primary resistance to and maximize the benefits of immunotherapy in neuroblastoma.


Subject(s)
Immunotherapy , Neuroblastoma , Humans , Child , Killer Cells, Natural , Neuroblastoma/drug therapy , Macrophages/metabolism , Longitudinal Studies , Tumor Microenvironment
4.
Front Immunol ; 12: 651687, 2021.
Article in English | MEDLINE | ID: mdl-33777052

ABSTRACT

Background: The immunomodulatory enzyme, indoleamine 2,3-dioxygenase (IDO) facilitates tryptophan catabolism at the rate-limiting step of the kynurenine (Kyn) pathway. IDO expression and elevations in Kyn metabolites are associated with immunosuppressive tumor microenvironment including T cell proliferative arrest and generation of regulatory T cells (Tregs) which can favor tumor progression. However, the extent of the role of IDO in acute myeloid leukemia (AML) is currently ill-defined. This study reviews the role of IDO-driven Treg function in AML and evaluates the current body of evidence implicating IDO in AML pathogenesis. Method: Studies related to IDO in AML were identified through a systematic review of PubMed and Scopus. Data extracted described sample analysis, IDO expression, IDO in prognosis, techniques used in Treg phenotypic studies, and the effect of IDO inhibitors. Results: Twenty studies were included in the systematic review. Expression of IDO was identified in a range of cells in AML, both inducible and constitutive. Seven studies indicated an association between elevated expression and poor clinical prognosis. Six studies suggested a positive correlation between IDO expression and Treg induction, with FoxP3 being the prominent Treg phenotypic marker. Of eight studies investigating IDO inhibition, some reported reductions in Treg frequency and enhanced effector T cell proliferation. Conclusion: This review highlights that IDO expression in AML is associated with poor prognosis and measurement of IDO and its Kyn metabolites may offer utility as prospective prognostic markers. Pharmacological inhibition of IDO using novel drugs may hold promise for the treatment of AML.


Subject(s)
Gene Expression Regulation, Leukemic/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Leukemia, Myeloid, Acute/genetics , Tumor Escape/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation/genetics , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/mortality , Prognosis , Progression-Free Survival , Randomized Controlled Trials as Topic , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Tryptophan/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
5.
J Neurosci ; 41(13): 3025-3038, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33597269

ABSTRACT

Alzheimer's disease is a devastating neurodegenerative disease with a dramatically increasing prevalence and no disease-modifying treatment. Inflammatory lifestyle factors increase the risk of developing Alzheimer's disease. Zinc deficiency is the most prevalent malnutrition in the world and may be a risk factor for Alzheimer's disease potentially through enhanced inflammation, although evidence for this is limited. Here we provide epidemiological evidence suggesting that zinc supplementation was associated with reduced risk and slower cognitive decline, in people with Alzheimer's disease and mild cognitive impairment. Using the APP/PS1 mouse model of Alzheimer's disease fed a control (35 mg/kg zinc) or diet deficient in zinc (3 mg/kg zinc), we determined that zinc deficiency accelerated Alzheimer's-like memory deficits without modifying amyloid ß plaque burden in the brains of male mice. The NLRP3-inflammasome complex is one of the most important regulators of inflammation, and we show here that zinc deficiency in immune cells, including microglia, potentiated NLRP3 responses to inflammatory stimuli in vitro, including amyloid oligomers, while zinc supplementation inhibited NLRP3 activation. APP/PS1 mice deficient in NLRP3 were protected against the accelerated cognitive decline with zinc deficiency. Collectively, this research suggests that zinc status is linked to inflammatory reactivity and may be modified in people to reduce the risk and slow the progression of Alzheimer's disease.SIGNIFICANCE STATEMENT Alzheimer's disease is a common condition mostly affecting the elderly. Zinc deficiency is also a global problem, especially in the elderly and also in people with Alzheimer's disease. Zinc deficiency contributes to many clinical disorders, including immune dysfunction. Inflammation is known to contribute to the risk and progression of Alzheimer's disease; thus, we hypothesized that zinc status would affect Alzheimer's disease progression. Here we show that zinc supplementation reduced the prevalence and symptomatic decline in people with Alzheimer's disease. In an animal model of Alzheimer's disease, zinc deficiency worsened cognitive decline because of an enhancement in NLRP3-driven inflammation. Overall, our data suggest that zinc status affects Alzheimer's disease progression, and that zinc supplementation could slow the rate of cognitive decline.


Subject(s)
Alzheimer Disease/blood , Cognitive Dysfunction/blood , Disease Progression , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Zinc/blood , Adult , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/diet therapy , Animals , Cells, Cultured , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/diet therapy , Dietary Supplements , Female , Follow-Up Studies , Humans , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Zinc/administration & dosage , Zinc/deficiency
6.
EMBO Mol Med ; 10(8)2018 08.
Article in English | MEDLINE | ID: mdl-29930174

ABSTRACT

The adaptive cellular response to low oxygen tensions is mediated by the hypoxia-inducible factors (HIFs), a family of heterodimeric transcription factors composed of HIF-α and HIF-ß subunits. Prolonged HIF expression is a key contributor to cellular transformation, tumorigenesis and metastasis. As such, HIF degradation under hypoxic conditions is an essential homeostatic and tumour-suppressive mechanism. LIMD1 complexes with PHD2 and VHL in physiological oxygen levels (normoxia) to facilitate proteasomal degradation of the HIF-α subunit. Here, we identify LIMD1 as a HIF-1 target gene, which mediates a previously uncharacterised, negative regulatory feedback mechanism for hypoxic HIF-α degradation by modulating PHD2-LIMD1-VHL complex formation. Hypoxic induction of LIMD1 expression results in increased HIF-α protein degradation, inhibiting HIF-1 target gene expression, tumour growth and vascularisation. Furthermore, we report that copy number variation at the LIMD1 locus occurs in 47.1% of lung adenocarcinoma patients, correlates with enhanced expression of a HIF target gene signature and is a negative prognostic indicator. Taken together, our data open a new field of research into the aetiology, diagnosis and prognosis of LIMD1-negative lung cancers.


Subject(s)
Adenocarcinoma/genetics , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Intracellular Signaling Peptides and Proteins/metabolism , LIM Domain Proteins/metabolism , Lung Neoplasms/genetics , Adenocarcinoma/diagnosis , Adenocarcinoma/metabolism , Adenocarcinoma/mortality , Adult , Aged , Aged, 80 and over , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Hypoxia/genetics , Cell Hypoxia/physiology , Cell Line, Tumor , Feedback, Physiological , Female , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Intracellular Signaling Peptides and Proteins/genetics , LIM Domain Proteins/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Male , Mice , Middle Aged , Prognosis , Survival Analysis , Vascular Endothelial Growth Factor A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...