Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Haematologica ; 105(5): 1206-1215, 2020 05.
Article in English | MEDLINE | ID: mdl-31371413

ABSTRACT

Human bone marrow stromal cells (BMSC) are key elements of the hematopoietic environment and they play a central role in bone and bone marrow physiology. However, how key stromal cell functions are regulated is largely unknown. We analyzed the role of the immediate early response transcription factor EGR1 as key stromal cell regulator and found that EGR1 was highly expressed in prospectively-isolated primary BMSC, down-regulated upon culture, and low in non-colony-forming CD45neg stromal cells. Furthermore, EGR1 expression was lower in proliferative regenerating adult and fetal primary cells compared to adult steady-state BMSC. Overexpression of EGR1 in stromal cells induced potent hematopoietic stroma support as indicated by an increased production of transplantable CD34+CD90+ hematopoietic stem cells in expansion co-cultures. The improvement in bone marrow stroma support function was mediated by increased expression of hematopoietic supporting genes, such as VCAM1 and CCL28 Furthermore, EGR1 overexpression markedly decreased stromal cell proliferation whereas EGR1 knockdown caused the opposite effects. These findings thus show that EGR1 is a key stromal transcription factor with a dual role in regulating proliferation and hematopoietic stroma support function that is controlling a genetic program to co-ordinate the specific functions of BMSC in their different biological contexts.


Subject(s)
Mesenchymal Stem Cells , Adult , Antigens, CD34 , Bone Marrow Cells , Cell Proliferation , Hematopoietic Stem Cells , Humans , Stromal Cells
3.
Cell Stem Cell ; 19(5): 613-627, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27666011

ABSTRACT

Mesenchymal niche cells may drive tissue failure and malignant transformation in the hematopoietic system, but the underlying molecular mechanisms and relevance to human disease remain poorly defined. Here, we show that perturbation of mesenchymal cells in a mouse model of the pre-leukemic disorder Shwachman-Diamond syndrome (SDS) induces mitochondrial dysfunction, oxidative stress, and activation of DNA damage responses in hematopoietic stem and progenitor cells. Massive parallel RNA sequencing of highly purified mesenchymal cells in the SDS mouse model and a range of human pre-leukemic syndromes identified p53-S100A8/9-TLR inflammatory signaling as a common driving mechanism of genotoxic stress. Transcriptional activation of this signaling axis in the mesenchymal niche predicted leukemic evolution and progression-free survival in myelodysplastic syndrome (MDS), the principal leukemia predisposition syndrome. Collectively, our findings identify mesenchymal niche-induced genotoxic stress in heterotypic stem and progenitor cells through inflammatory signaling as a targetable determinant of disease outcome in human pre-leukemia.


Subject(s)
DNA Damage , Disease Progression , Hematopoietic Stem Cells/pathology , Inflammation/pathology , Leukemia/pathology , Mesenchymal Stem Cells/pathology , Precancerous Conditions/pathology , Animals , Bone Marrow Diseases/pathology , Bone and Bones/abnormalities , Bone and Bones/pathology , DNA Repair , Exocrine Pancreatic Insufficiency/pathology , Gene Deletion , Hematopoietic Stem Cells/metabolism , Humans , Integrases/metabolism , Leukemia/metabolism , Lipomatosis/pathology , Mesenchymal Stem Cells/metabolism , Mice , Mitochondria/metabolism , Oxidative Stress , Pathogen-Associated Molecular Pattern Molecules/metabolism , Precancerous Conditions/metabolism , Proteins/metabolism , Risk Factors , S100 Proteins/genetics , S100 Proteins/metabolism , Shwachman-Diamond Syndrome , Signal Transduction , Sp7 Transcription Factor , Stem Cell Niche , Toll-Like Receptors/metabolism , Transcription Factors/metabolism , Treatment Outcome , Tumor Suppressor Protein p53/metabolism
4.
J Immunol ; 197(7): 2686-94, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27574301

ABSTRACT

During embryogenesis, lymph nodes form through intimate interaction between lymphoid tissue inducer and lymphoid tissue organizer (LTo) cells. Shortly after birth in mice, specialized stromal cell subsets arise that organize microenvironments within the lymph nodes; however, their direct precursors have not yet been identified. In the bone marrow, mesenchymal stem cells are labeled with GFP in nestin-GFP mice, and we show that during all stages of development, nestin(+) cells are present within lymph nodes of these mice. At day of birth, both mesenchymal CD31(-) and endothelial CD31(+) LTo cells were GFP(+), and only the population of CD31(-) LTo cells contained mesenchymal precursors. These CD31(-)nestin(+) cells are found in the T and B cell zones or in close association with high endothelial venules in adult lymph nodes. Fate mapping of nestin(+) cells unambiguously revealed the contribution of nestin(+) precursor cells to the mesenchymal as well as the endothelial stromal populations within lymph nodes. However, postnatal tamoxifen induced targeting of nestin(+) cells in nes-creER mice showed that most endothelial cells and only a minority of the nonendothelial cells were labeled. Overall our data show that nestin(+) cells contribute to all subsets of the complex stromal populations that can be found in lymph nodes.


Subject(s)
Endothelial Cells/cytology , Lymph Nodes/cytology , Nestin/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Stromal Cells/cytology , Stromal Cells/metabolism , Animals , Gene Expression Profiling , Mice , Mice, Inbred C57BL , Nestin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...