Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Microb Genom ; 5(1)2019 01.
Article in English | MEDLINE | ID: mdl-30648944

ABSTRACT

The persuasiveness of genomic evidence has pressured scientific agencies to supplement or replace well-established methodologies to inform public health and food safety decision-making. This study of 52 epidemiologically defined Listeria monocytogenes isolates, collected between 1981 and 2011, including nine outbreaks, was undertaken (1) to characterize their phylogenetic relationship at finished genome-level resolution, (2) to elucidate the underlying genetic diversity within an endemic subtype, CC8, and (3) to re-evaluate the genetic relationship and epidemiology of a CC8-delimited outbreak in Canada in 2008. Genomes representing Canadian Listeria outbreaks between 1981 and 2010 were closed and manually annotated. Single nucleotide variants (SNVs) and horizontally acquired traits were used to generate phylogenomic models. Phylogenomic relationships were congruent with classical subtyping and epidemiology, except for CC8 outbreaks, wherein the distribution of SNV and prophages revealed multiple co-evolving lineages. Chronophyletic reconstruction of CC8 evolution indicates that prophage-related genetic changes among CC8 strains manifest as PFGE subtype reversions, obscuring the relationship between CC8 isolates, and complicating the public health interpretation of subtyping data, even at maximum genome resolution. The size of the shared genome interrogated did not change the genetic relationship measured between highly related isolates near the tips of the phylogenetic tree, illustrating the robustness of these approaches for routine public health applications where the focus is recent ancestry. The possibility exists for temporally and epidemiologically distinct events to appear related even at maximum genome resolution, highlighting the continued importance of epidemiological evidence.


Subject(s)
Databases, Nucleic Acid , Genome, Bacterial , Listeria monocytogenes/genetics , Listeriosis/genetics , Phylogeny , Prophages/genetics , Sequence Analysis, DNA , Canada , DNA, Bacterial/genetics , Disease Outbreaks , Humans , Listeriosis/epidemiology
2.
BMC Genomics ; 14: 895, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24341328

ABSTRACT

BACKGROUND: The Streptococcus Anginosus Group (SAG) represents three closely related species of the viridans group streptococci recognized as commensal bacteria of the oral, gastrointestinal and urogenital tracts. The SAG also cause severe invasive infections, and are pathogens during cystic fibrosis (CF) pulmonary exacerbation. Little genomic information or description of virulence mechanisms is currently available for SAG. We conducted intra and inter species whole-genome comparative analyses with 59 publically available Streptococcus genomes and seven in-house closed high quality finished SAG genomes; S. constellatus (3), S. intermedius (2), and S. anginosus (2). For each SAG species, we sequenced at least one numerically dominant strain from CF airways recovered during acute exacerbation and an invasive, non-lung isolate. We also evaluated microevolution that occurred within two isolates that were cultured from one individual one year apart. RESULTS: The SAG genomes were most closely related to S. gordonii and S. sanguinis, based on shared orthologs and harbor a similar number of proteins within each COG category as other Streptococcus species. Numerous characterized streptococcus virulence factor homologs were identified within the SAG genomes including; adherence, invasion, spreading factors, LPxTG cell wall proteins, and two component histidine kinases known to be involved in virulence gene regulation. Mobile elements, primarily integrative conjugative elements and bacteriophage, account for greater than 10% of the SAG genomes. S. anginosus was the most variable species sequenced in this study, yielding both the smallest and the largest SAG genomes containing multiple genomic rearrangements, insertions and deletions. In contrast, within the S. constellatus and S. intermedius species, there was extensive continuous synteny, with only slight differences in genome size between strains. Within S. constellatus we were able to determine important SNPs and changes in VNTR numbers that occurred over the course of one year. CONCLUSIONS: The comparative genomic analysis of the SAG clarifies the phylogenetics of these bacteria and supports the distinct species classification. Numerous potential virulence determinants were identified and provide a foundation for further studies into SAG pathogenesis. Furthermore, the data may be used to enable the development of rapid diagnostic assays and therapeutics for these pathogens.


Subject(s)
Genome, Bacterial , Phylogeny , Streptococcus anginosus/classification , Streptococcus anginosus/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Order , Gene Transfer, Horizontal , Genes, Bacterial , Genetic Loci , Genomics , Histidine Kinase , Minisatellite Repeats , Molecular Sequence Data , Polymorphism, Single Nucleotide , Protein Kinases/genetics , Repetitive Sequences, Nucleic Acid , Streptococcus anginosus/pathogenicity , Virulence/genetics , Virulence Factors/genetics
3.
J Bacteriol ; 194(23): 6627-8, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23144384

ABSTRACT

Despite reports of high colonization rates of ST398 livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) among pigs and pig farmers, the incidence of LA-MRSA infection in the general population in Canada appears to be rare in comparison to that in some European countries. In this study, the complete genome sequence of a Canadian representative LA-MRSA isolate (08BA02176) from a human postoperative surgical site infection was acquired and compared to the sequenced genome of an LA-MRSA isolate (S0385) from Europe to identify genetic traits that may explain differences in the success of these particular strains in some locales.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Methicillin-Resistant Staphylococcus aureus/genetics , Sequence Analysis, DNA , Canada , Humans , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Molecular Sequence Data , Staphylococcal Infections/microbiology , Surgical Wound Infection/microbiology
4.
Emerg Infect Dis ; 17(11): 2113-21, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22099115

ABSTRACT

Cholera was absent from the island of Hispaniola at least a century before an outbreak that began in Haiti in the fall of 2010. Pulsed-field gel electrophoresis (PFGE) analysis of clinical isolates from the Haiti outbreak and recent global travelers returning to the United States showed indistinguishable PFGE fingerprints. To better explore the genetic ancestry of the Haiti outbreak strain, we acquired 23 whole-genome Vibrio cholerae sequences: 9 isolates obtained in Haiti or the Dominican Republic, 12 PFGE pattern-matched isolates linked to Asia or Africa, and 2 nonmatched outliers from the Western Hemisphere. Phylogenies for whole-genome sequences and core genome single-nucleotide polymorphisms showed that the Haiti outbreak strain is genetically related to strains originating in India and Cameroon. However, because no identical genetic match was found among sequenced contemporary isolates, a definitive genetic origin for the outbreak in Haiti remains speculative.


Subject(s)
Genome, Bacterial , Vibrio cholerae/genetics , Africa/epidemiology , Alleles , Asia/epidemiology , Bacterial Proteins/genetics , Cholera/epidemiology , Cholera Toxin/genetics , Disease Outbreaks , Electrophoresis, Gel, Pulsed-Field , Gene Order , Haiti/epidemiology , Humans , Interspersed Repetitive Sequences/genetics , Phylogeny , Prophages , Sequence Homology, Amino Acid , Vibrio cholerae/classification , Vibrio cholerae/isolation & purification
5.
BMC Genomics ; 11: 120, 2010 Feb 18.
Article in English | MEDLINE | ID: mdl-20167121

ABSTRACT

BACKGROUND: A large, multi-province outbreak of listeriosis associated with ready-to-eat meat products contaminated with Listeria monocytogenes serotype 1/2a occurred in Canada in 2008. Subtyping of outbreak-associated isolates using pulsed-field gel electrophoresis (PFGE) revealed two similar but distinct AscI PFGE patterns. High-throughput pyrosequencing of two L. monocytogenes isolates was used to rapidly provide the genome sequence of the primary outbreak strain and to investigate the extent of genetic diversity associated with a change of a single restriction enzyme fragment during PFGE. RESULTS: The chromosomes were collinear, but differences included 28 single nucleotide polymorphisms (SNPs) and three indels, including a 33 kbp prophage that accounted for the observed difference in AscI PFGE patterns. The distribution of these traits was assessed within further clinical, environmental and food isolates associated with the outbreak, and this comparison indicated that three distinct, but highly related strains may have been involved in this nationwide outbreak. Notably, these two isolates were found to harbor a 50 kbp putative mobile genomic island encoding translocation and efflux functions that has not been observed in other Listeria genomes. CONCLUSIONS: High-throughput genome sequencing provided a more detailed real-time assessment of genetic traits characteristic of the outbreak strains than could be achieved with routine subtyping methods. This study confirms that the latest generation of DNA sequencing technologies can be applied during high priority public health events, and laboratories need to prepare for this inevitability and assess how to properly analyze and interpret whole genome sequences in the context of molecular epidemiology.


Subject(s)
Food Contamination , Food Microbiology , Genome, Bacterial , Listeria monocytogenes/genetics , Sequence Analysis, DNA/methods , Canada/epidemiology , Computational Biology , DNA, Bacterial/genetics , Disease Outbreaks , Foodborne Diseases/microbiology , Genomic Islands , High-Throughput Screening Assays , INDEL Mutation , Listeria monocytogenes/classification , Listeria monocytogenes/isolation & purification , Listeria monocytogenes/pathogenicity , Listeriosis/epidemiology , Meat Products/microbiology , Phylogeny , Plasmids , Polymorphism, Single Nucleotide , Prophages , Sequence Alignment , Serotyping , Virulence
8.
CMAJ ; 168(2): 207, 2003 Jan 21.
Article in English | MEDLINE | ID: mdl-12538560
10.
CMAJ ; 166(12): 1583, 2002 Jun 11.
Article in English | MEDLINE | ID: mdl-12074135
SELECTION OF CITATIONS
SEARCH DETAIL
...