Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Res ; 21(5): 411-427, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36669126

ABSTRACT

The nuclear deubiquitylase BRCA1-associated protein 1 (BAP1) is frequently inactivated in malignant pleural mesothelioma (MPM) and germline BAP1 mutation predisposes to cancers including MPM. To explore the influence on cell physiology and drug sensitivity, we sequentially edited a predisposition mutation (w-) and a promoter trap (KO) into human mesothelial cells. BAP1w-/KO MeT5A cells express less BAP1 protein and phenocopy key aspects of BAP1 loss in MPM. Stable isotope labeling with amino acids in cell culture-mass spectrometry revealed evidence of metabolic adaptation, with concomitant alteration of cellular metabolites. In MeT5A, BAP1 deficiency reduces glycolytic enzyme levels but increases enzymes involved in the tricarboxylic acid cycle and anaplerotic pathways. Notably both argininosuccinate synthase 1 (ASS1), essential for cellular synthesis of arginine, and its substrate aspartate, are elevated in BAP1w-/KO MeT5A cells. Likewise, ASS1 expression is higher in BAP1-altered MPM cell lines, and inversely correlates with BAP1 in The Cancer Genome Atlas MESO dataset. Elevated ASS1 is also evident by IHC staining in epithelioid MPM lacking nuclear BAP1 expression, with improved survival among patients with BAP1-negative/ASS1-expressing tumors. Alterations in arginine metabolism may sensitize cells to metabolic drugs and we find that BAP1-negative/ASS1-expressing MPM cell lines are more sensitive to ASS1 inhibition, although not to inhibition of purine synthesis by mizoribine. Importantly, BAP1w-/KO MeT5A become desensitized to arginine deprivation by pegylated arginine deiminase (ADI-PEG20), phenocopying BAP1-negative/ASS1-expressing MPM cell lines. IMPLICATIONS: Our data reveal an interrelationship between BAP1 and arginine metabolism, providing a potential means of identifying patients with epithelioid MPM likely to benefit from ADI-PEG20.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Humans , Argininosuccinate Synthase/genetics , Argininosuccinate Synthase/metabolism , Ubiquitin Thiolesterase/genetics , Amino Acids , Arginine/metabolism , Mesothelioma/drug therapy , Mesothelioma/genetics , Cell Line, Tumor , Tumor Suppressor Proteins/genetics
3.
Pigment Cell Melanoma Res ; 31(2): 253-266, 2018 03.
Article in English | MEDLINE | ID: mdl-28972303

ABSTRACT

Metastatic uveal melanoma (UM) is invariably fatal, usually within a year of diagnosis. There are currently no effective therapies, and clinical studies employing kinase inhibitors have so far demonstrated limited success. This is despite common activating mutations in GNAQ/11 genes, which trigger signalling pathways that might predispose tumours to a variety of targeted drugs. In this study, we have profiled kinome expression network dynamics in various human ocular melanomas. We uncovered a shared transcriptional profile in human primary UM samples and across a variety of experimental cell-based models. The poor overall response of UM cells to FDA-approved kinase inhibitors contrasted with much higher sensitivity to the bromodomain inhibitor JQ1, a broad transcriptional repressor. Mechanistically, we identified a repressed FOXM1-dependent kinase subnetwork in JQ1-exposed cells that contained multiple cell cycle-regulated protein kinases. Consistently, we demonstrated vulnerability of UM cells to inhibitors of mitotic protein kinases within this network, including the investigational PLK1 inhibitor BI6727. We conclude that analysis of kinome-wide signalling network dynamics has the potential to reveal actionable drug targets and inhibitors of potential therapeutic benefit for UM patients.


Subject(s)
Gene Expression Profiling , Melanoma/genetics , Molecular Targeted Therapy , Protein Kinases/metabolism , Uveal Neoplasms/genetics , Azepines/pharmacology , Cell Cycle Proteins , Cell Line, Tumor , Computational Biology , Down-Regulation/drug effects , Forkhead Box Protein M1/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Humans , Melanoma/pathology , Nuclear Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-myc/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Transcription Factors/metabolism , Transcriptome/genetics , Triazoles/pharmacology , Uveal Neoplasms/pathology
4.
Oncotarget ; 6(15): 13757-71, 2015 May 30.
Article in English | MEDLINE | ID: mdl-25970771

ABSTRACT

Histone deacetylases are important targets for cancer therapeutics, but their regulation is poorly understood. Our data show coordinated transcription of HDAC1 and HDAC2 in lung cancer cell lines, but suggest HDAC2 protein expression is cell-context specific. Through an unbiased siRNA screen we found that BRCA1-associated protein 1 (BAP1) regulates their expression, with HDAC2 reduced and HDAC1 increased in BAP1 depleted cells. BAP1 loss-of-function is increasingly reported in cancers including thoracic malignancies, with frequent mutation in malignant pleural mesothelioma. Endogenous HDAC2 directly correlates with BAP1 across a panel of lung cancer cell lines, and is downregulated in mesothelioma cell lines with genetic BAP1 inactivation. We find that BAP1 regulates HDAC2 by increasing transcript abundance, rather than opposing its ubiquitylation. Importantly, although total cellular HDAC activity is unaffected by transient depletion of HDAC2 or of BAP1 due to HDAC1 compensation, this isoenzyme imbalance sensitizes MSTO-211H cells to HDAC inhibitors. However, other established mesothelioma cell lines with low endogenous HDAC2 have adapted to become more resistant to HDAC inhibition. Our work establishes a mechanism by which BAP1 loss alters sensitivity of cancer cells to HDAC inhibitors. Assessment of BAP1 and HDAC expression may ultimately help identify patients likely to respond to HDAC inhibitors.


Subject(s)
Histone Deacetylase 1/biosynthesis , Histone Deacetylase Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Mesothelioma/drug therapy , Mesothelioma/enzymology , Tumor Suppressor Proteins/deficiency , Ubiquitin Thiolesterase/deficiency , Apoptosis/drug effects , Cell Line, Tumor , Histone Deacetylase 2/biosynthesis , Histone Deacetylase 2/genetics , Humans , Lung Neoplasms/pathology , Mesothelioma/pathology , Mesothelioma, Malignant , Transcription, Genetic/drug effects , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitination/drug effects
5.
J Proteomics ; 106: 230-45, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24769234

ABSTRACT

Profiling of protein species is important because gene polymorphisms, splice variations and post-translational modifications may combine and give rise to multiple protein species that have different effects on cellular function. Two-dimensional gel electrophoresis is one of the most robust methods for differential analysis of protein species, but bioinformatic interrogation is challenging because the consequences of changes in the abundance of individual protein species on cell function are unknown and cannot be predicted. We conducted DIGE of soleus muscle from male and female rats artificially selected as either high- or low-capacity runners (HCR and LCR, respectively). In total 696 protein species were resolved and LC-MS/MS identified proteins in 337 spots. Forty protein species were differentially (P<0.05, FDR<10%) expressed between HCR and LCR and conditional independence mapping found distinct networks within these data, which brought insight beyond that achieved by functional annotation. Protein disulphide isomerase A3 emerged as a key node segregating with differences in aerobic capacity and unsupervised bibliometric analysis highlighted further links to signal transducer and activator of transcription 3, which were confirmed by western blotting. Thus, conditional independence mapping is a useful technique for interrogating DIGE data that is capable of highlighting latent features. BIOLOGICAL SIGNIFICANCE: Quantitative proteome profiling revealed that there is little or no sexual dimorphism in the skeletal muscle response to artificial selection on running capacity. Instead we found that noncanonical STAT3 signalling may be associated with low exercise capacity and skeletal muscle insulin resistance. Importantly, this discovery was made using unsupervised multivariate association mapping and bibliometric network analyses. This allowed our interpretation of the findings to be guided by patterns within the data rather than our preconceptions about which proteins or processes are of greatest interest. Moreover, we demonstrate that this novel approach can be applied to 2D gel analysis, which is unsurpassed in its ability to profile protein species but currently has few dedicated bioinformatic tools.


Subject(s)
Muscle, Skeletal/metabolism , Protein Disulfide-Isomerases/metabolism , STAT3 Transcription Factor/metabolism , Animals , Computational Biology , Electrophoresis, Gel, Two-Dimensional , Female , Leptin/blood , Male , Oxidative Phosphorylation , Phenotype , Phosphorylation , Physical Endurance , Polymorphism, Genetic , Proteome , Proteomics , Rats , Running/physiology , Sex Factors , Signal Transduction , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
6.
OMICS ; 16(9): 489-95, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22888986

ABSTRACT

Numerous software packages exist to provide support for quantifying peptides and proteins from mass spectrometry (MS) data. However, many support only a subset of experimental methods or instrument types, meaning that laboratories often have to use multiple software packages. The Progenesis LC-MS software package from Nonlinear Dynamics is a software solution for label-free quantitation. However, many laboratories using Progenesis also wish to employ stable isotope-based methods that are not natively supported in Progenesis. We have developed a Java programming interface that can use the output files produced by Progenesis, allowing the basic MS features quantified across replicates to be used in a range of different experimental methods. We have developed post-processing software (the Progenesis Post-Processor) to embed Progenesis in the analysis of stable isotope labeling data and top3 pseudo-absolute quantitation. We have also created export ability to the new data standard, mzQuantML, produced by the Proteomics Standards Initiative to facilitate the development and standardization process. The software is provided to users with a simple graphical user interface for accessing the different features. The underlying programming interface may also be used by Java developers to develop other routines for analyzing data produced by Progenesis.


Subject(s)
Chromatography, Liquid/methods , Isotope Labeling/methods , Mass Spectrometry/methods , Software
7.
Proteomics ; 11(16): 3369-79, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21751351

ABSTRACT

Selection on running capacity has created rat phenotypes of high-capacity runners (HCRs) that have enhanced cardiac function and low-capacity runners (LCRs) that exhibit risk factors of metabolic syndrome. We analysed hearts of HCRs and LCRs from generation 22 of selection using DIGE and identified proteins from MS database searches. The running capacity of HCRs was six-fold greater than LCRs. DIGE resolved 957 spots and proteins were unambiguously identified in 369 spots. Protein expression profiling detected 67 statistically significant (p<0.05; false discovery rate <10%, calculated using q-values) differences between HCRs and LCRs. Hearts of HCR rats exhibited robust increases in the abundance of each enzyme of the ß-oxidation pathway. In contrast, LCR hearts were characterised by the modulation of enzymes associated with ketone body or amino acid metabolism. LCRs also exhibited enhanced expression of antioxidant enzymes such as catalase and greater phosphorylation of α B-crystallin at serine 59, which is a common point of convergence in cardiac stress signalling. Thus, proteomic analysis revealed selection on low running capacity is associated with perturbations in cardiac energy metabolism and provided the first evidence that the LCR cardiac proteome is exposed to greater oxidative stress.


Subject(s)
Exercise Tolerance/physiology , Heart/physiology , Myocardium/metabolism , Proteome/analysis , Running/physiology , Animals , Electrophoresis, Gel, Two-Dimensional , Energy Metabolism/physiology , Image Processing, Computer-Assisted , Immunoblotting , Myocardium/chemistry , Myocardium/enzymology , Oxidative Stress/physiology , Physical Conditioning, Animal/physiology , Proteome/metabolism , Proteome/physiology , Proteomics , Rats , Tandem Mass Spectrometry
8.
BMC Res Notes ; 4: 86, 2011 Mar 28.
Article in English | MEDLINE | ID: mdl-21443781

ABSTRACT

BACKGROUND: Proteomic techniques allow researchers to perform detailed analyses of cellular states and many studies are published each year, which highlight large numbers of proteins quantified in different samples. However, currently few data sets make it into public databases with sufficient metadata to allow other groups to verify findings, perform data mining or integrate different data sets. The Proteomics Standards Initiative has released a series of "Minimum Information About a Proteomics Experiment" guideline documents (MIAPE modules) and accompanying data exchange formats. This article focuses on proteomic studies based on gel electrophoresis and demonstrates how the corresponding MIAPE modules can be fulfilled and data deposited in public databases, using a new experimental data set as an example. FINDINGS: We have performed a study of the effects of an anabolic agent (salbutamol) at two different time points on the protein complement of rat skeletal muscle cells, quantified by difference gel electrophoresis. In the DIGE study, a total of 31 non-redundant proteins were identified as being potentially modulated at 24 h post treatment and 110 non redundant proteins at 96 h post-treatment. Several categories of function have been highlighted as strongly enriched, providing candidate proteins for further study. We also use the study as an example of best practice for data deposition. CONCLUSIONS: We have deposited all data sets from this study in public databases for further analysis by the community. We also describe more generally how gel-based protein identification data sets can now be deposited in the PRoteomics IDEntifications database (PRIDE), using a new software tool, the PRIDESpotMapper, which we developed to work in conjunction with the PRIDE Converter application. We also demonstrate how the ProteoRed MIAPE generator tool can be used to create and share a complete and compliant set of MIAPE reports for this experiment and others.

SELECTION OF CITATIONS
SEARCH DETAIL
...