Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 52(7): 3547-55, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23485079

ABSTRACT

Hexavalent neptunium can be solubilized in 0.5-3.5 M aqueous MOH (M = Li(+), Na(+), NMe4(+) = TMA(+)) solutions. Single crystals were obtained from cooling of a dilute solution of Co(NH3)6Cl3 and NpO2(2+) in 3.5 M [N(Me)4]OH to 5 °C. A single-crystal X-ray diffraction study revealed the molecular formula of [Co(NH3)6]2[NpO2(OH)4]3·H2O, isostructural with the uranium analogue. The asymmetric unit contains three distinct NpO2(OH)4(2-) ions, each with pseudooctahedral coordination geometry with trans-oxo ligands. The average Np═O and Np-OH distances were determined to be 1.80(1) and 2.24(1) Å, respectively. EXAFS data and fits at the Np L(III)-edge on solid [Co(NH3)6]2[NpO2(OH)4]3·H2O and aqueous solutions of NpO2(2+) in 2.5 and 3.5 M (TMA)OH revealed bond lengths nearly identical with those determined by X-ray diffraction but with an increase in the number of equatorial ligands with increasing (TMA)OH concentration. Raman spectra of single crystals of [Co(NH3)6]2[NpO2(OH)4]3·H2O reveal a ν1(O═Np═O) symmetric stretch at 741 cm(-1). Raman spectra of NpO2(2+) recorded in a 0.6-2.2 M LiOH solution reveal a single ν1 frequency of 769 cm(-1). Facile exchange of the neptunyl oxo ligands with the water solvent was also observed with Raman spectroscopy performed with (16)O- and (18)O-enriched water solvent. The combination of EXAFS and Raman data suggests that NpO2(OH)4(2-) is the dominant solution species under the conditions of study and that a small amount of a second species, NpO2(OH)5(3-), may also be present at higher alkalinity. Crystal data for [Co(NH3)6]2[NpO2(OH)4]3·H2O: monoclinic, space group C2/c, a = 17.344(4) Å, b = 12.177(3) Å, c = 15.273 Å, ß = 120.17(2)°, Z = 4, R1 = 0.0359, wR2 = 0.0729.

2.
Phys Chem Chem Phys ; 11(44): 10396-402, 2009 Nov 28.
Article in English | MEDLINE | ID: mdl-19890525

ABSTRACT

Experimental L(III) X-ray absorption near edge structure (XANES) spectra of the distorted octahedral neptunium oxo ions NpO(2)(OH)(4)(2-), NpO(4)(OH)(2)(3-), and NpO(6)(6-) are interpreted using relativistic full multiple scattering calculations of the X-ray absorption process. In this series of compounds, the neptunium cation exhibits two different oxidation states, VI and VII, with coordination spheres from di- to tetra oxo for the first two compounds. The comparison between calculated XANES spectra using the feff code and experimental ones shows that the main features in the spectra are determined by the local coordination around the actinide metal center. Furthermore, the projected density of electronic states (DOS) calculated from the XANES simulations using the feff code are compared to calculations using ADF code. They are both discussed in terms of molecular orbitals and qualitative evolution of bonding within this series of compounds.

3.
J Am Chem Soc ; 126(41): 13443-58, 2004 Oct 20.
Article in English | MEDLINE | ID: mdl-15479101

ABSTRACT

Pu L(3) X-ray absorption fine structure spectra from 24 samples of PuO(2+x) (and two related Pu-substituted oxides), prepared by a variety of methods, demonstrate that (1) although the Pu sublattice remains the ordered part of the Pu distribution, the nearest-neighbor O atoms even at x = 0 are found in a multisite distribution with Pu-O distances consistent with the stable incorporation of OH(-) (and possibly H(2)O and H(+)) into the PuO(2) lattice; (2) the excess O from oxidation is found at Pu-O distances <1.9 A, consistent with the multiply bound "oxo"-type ligands found in molecular complexes of Pu(V) and Pu(VI); (3) the Pu associated with these oxo groups is most likely Pu(V), so that the excess O probably occurs as PuO(2)(+) moieties that are aperiodically distributed through the lattice; and (4) the collective interactions between these defect sites most likely cause them to cluster so as give nanoscale heterogeneity in the form of domains that may have unusual reactivity, observed as sequential oxidation by H(2)O at ambient conditions. The most accurate description of PuO(2) is therefore actually PuO(2+x-y)(OH)(2)(y).zH(2)O, with pure, ordered, homogeneous PuO(2) attained only when H(2)O is rigorously excluded and the O activity is relatively low.

4.
Inorg Chem ; 43(1): 116-31, 2004 Jan 12.
Article in English | MEDLINE | ID: mdl-14704059

ABSTRACT

Pu L(3) X-ray near edge absorption spectra for Pu(0-VII) are reported for more than 60 chalcogenides, chlorides, hydrates, hydroxides, nitrates, carbonates, oxy-hydroxides, and other compounds both as solids and in solution, and substituted in zirconolite, perovskite, and borosilicate glass. This large database extends the known correlations between the energy and shape of these spectra from the usual association of the XANES with valence and site symmetry to higher order chemical effects. Because of the large number of compounds of these different types, a number of novel and unexpected behaviors are observed, such as effects resulting from the medium and disorder that can be as large as those from valence.

5.
Inorg Chem ; 42(21): 6682-90, 2003 Oct 20.
Article in English | MEDLINE | ID: mdl-14552620

ABSTRACT

The compound Sm[N(SiMe(3))(2)](3) has been investigated experimentally by X-ray crystallography and computationally by DFT methods. The structure is analogous to that of other tris[bis(trimethylsilyl)amido]lanthanides, featuring positional disorder of the metal atom above and below the plane defined by the three N donor atoms, resulting in a trigonal pyramidal configuration. One of the methyl groups of each amido ligand is placed above the apex of the pyramid at close distance to the metal center suggesting the presence of agostic interactions. The DFT calculations have been carried out on the real molecule and on a Si[N(SiH(3))(SiH(2)Me)](3) model where the unique Me group was placed above the apex of the pyramid to probe the agostic interaction. In both cases, the optimized geometry reproduces very well the experimental structure and indicates the presence of beta-Si-C agostic interactions. A comparison of the optimized geometries obtained in the presence/absence of the Sm d and the Si d orbitals serves to illustrate the relevance of these orbitals for (i). the establishment of the pyramidal configuration at Sm, (ii). the Sm-N bond length, and (iii). the Sm-(beta-Si-C) bond length. The bonding analysis, which was carried out by both Mulliken and NBO methods, not only confirms the importance of the metal d orbitals for the Sm-N and Sm-(beta-Si-C) chemical bonding but also illustrates the relevance of electrostatic terms in the agostic interaction. Sm-N and N-Si pi bonding is present according to the bonding analysis but is not important for enforcing the planar configuration at N, nor the pyramidal configuration at Sm.

6.
Inorg Chem ; 42(12): 3715-7, 2003 Jun 16.
Article in English | MEDLINE | ID: mdl-12793805

ABSTRACT

Pu L(3) XAFS measurements show that the excess oxygen in single phase PuO(2+)(x)() occurs as oxo groups with Pu-O distances of 1.83-1.91 A. This distance and the energy of the edge (via comparison with a large number of related compounds) are more consistent with a Pu(IV/V) than a Pu(IV/VI) mixture. Analogous to Pu(IV) colloids, although the Pu-Pu pair distribution remains single site even when it shows substantial disorder, the Pu-O distribution can display a number of additional shells at specific distances up to 3.4 A even in high fired materials when no oxo groups are present, implying intrinsic H(+)/OH(-)(/H(2)O). The number of oxo atoms increases when samples are equilibrated with humid air at ambient temperature, indicating that the Pu reactivity in this solid system differs notably from that of isolated complexes and demonstrating the importance of nanoscale cooperative phenomena and total free energy in determining its chemical properties.

7.
J Am Chem Soc ; 124(24): 7007-15, 2002 Jun 19.
Article in English | MEDLINE | ID: mdl-12059224

ABSTRACT

Treatment of nitrobenzene and other various nitroarenes with 6 equiv of samarium(II) under strictly anhydrous conditions allows for the isolation of aniline or the corresponding arylamine. Reducing the number of samarium(II) equivalents allows for the isolation of intermediate species, e.g., azoarenes or hydrazines. Use of Sm[N(SiMe(3))(2)](2), in place of the typically used SmI(2), has allowed for the detailed examination of the aqueous and nonaqueous species formed in this reduction and has been instrumental in delineation of the stepwise reaction mechanism. This is the first time that the reaction intermediates of an organic reaction mediated by samarium(II) have been isolated and analyzed by (1)H NMR and X-ray crystallography.

8.
Chem Commun (Camb) ; (22): 2710-1, 2002 Nov 21.
Article in English | MEDLINE | ID: mdl-12510311

ABSTRACT

A new methodology for the preparation of alpha-diimines and beta-aminoenones has been devised and represents an alternative route to these and related nitrogenous ligands bearing highly electronegative substituents.

10.
Angew Chem Int Ed Engl ; 40(3): 591-594, 2001 Feb 02.
Article in English | MEDLINE | ID: mdl-29712023

ABSTRACT

Applications of actinide chemistry, whether for energy or defense purposes, have left a legacy of potential waste hazards. The new expanded porphyrin ligand 1 forms stable complexes with both uranyl (UO22+ ) and neptunyl (NpO2+ ) ions and presents a potential new avenue for waste remediation.

SELECTION OF CITATIONS
SEARCH DETAIL
...