Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Heliyon ; 4(11): e00975, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30533548

ABSTRACT

Ketogenic diets (KD) consist of high fat, moderate protein and low carbohydrates. Studies have suggested that KD may influence oxidative stress by affecting mitochondrial quantity and/or quality, and perhaps lengthen lifespan. Therefore, we determined the effects of KD on multi-organ mitochondria volume and oxidative stress markers in rats. Ten month-old male Fisher 344 rats (n = 8 per group) were provided with one of two isocaloric diets: standard chow (SC) or KD. Rats were euthanized if: a) vitality scores exceeded a score of 16, b) rapid weight loss, or c) veterinarian deemed euthanasia necessary. The median lifespan of rats was higher in KD (762 days) compared to SC (624 days). Citrate synthase activity (i.e. estimate of mitochondria volume) was higher in the liver (p = 0.034) and gastrocnemius (p = 0.041) of KD compared to SC. Liver superoxide dismutase 1 and catalase antioxidant protein levels were higher in KD, albeit not significant (p = 0.094 and p = 0.062, respectively). No significant differences in protein levels of other antioxidants or markers of lipid and protein oxidative damage were observed in either the gastrocnemius, liver, or brain. In summary, KD increased mitochondria volume in liver and gastrocnemius and median lifespan in rats. Additionally, our data show that the increase in mitochondrial volume occurred without changes in oxidative damage or antioxidant protein levels in the gastrocnemius, liver, or brain.

2.
3.
Amino Acids ; 50(10): 1495, 2018 10.
Article in English | MEDLINE | ID: mdl-30099596

ABSTRACT

For the author R. Mac Thompson, the first name should be R. Mac and the last name should be Thompson. On SpringerLink the name is listed correctly, but on PubMed he is listed as Mac Thompson R.

4.
Eur J Appl Physiol ; 118(11): 2465-2476, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30155761

ABSTRACT

PURPOSE: Betalains are indole-derived pigments found in beet root, and recent studies suggest that they may exert ergogenic effects. Herein, we examined if supplementation for 7 days with betalain-rich beetroot concentrate (BLN) improved cycling performance or altered hemodynamic and serum analytes prior to, during and following a cycling time trial (TT). METHODS: Twenty-eight trained male cyclists (29 ± 10 years, 77.3 ± 13.3 kg, and 3.03 ± 0.62 W/kg) performed a counterbalanced crossover study whereby BLN (100 mg/day) or placebo (PLA) supplementation occurred over 7 days with a 1-week washout between conditions. On the morning of day seven of each supplementation condition, participants consumed one final serving of BLN or PLA and performed a 30-min cycling TT with concurrent assessment of several physiological variables and blood markers. RESULTS: BLN supplementation improved average absolute power compared to PLA (231.6 ± 36.2 vs. 225.3 ± 35.8 W, p = 0.050, d = 0.02). Average relative power, distance traveled, blood parameters (e.g., pH, lactate, glucose, NOx) and inflammatory markers (e.g., IL-6, IL-8, IL-10, TNFα) were not significantly different between conditions. BLN supplementation significantly improved exercise efficiency (W/ml/kg/min) in the last 5 min of the TT compared to PLA (p = 0.029, d = 0.45). Brachial artery blood flow in the BLN condition, immediately post-exercise, tended to be greater compared to PLA (p = 0.065, d = 0.32). CONCLUSIONS: We report that 7 days of BLN supplementation modestly improves 30-min TT power output, exercise efficiency as well as post-exercise blood flow without increasing plasma NOx levels or altering blood markers of inflammation, oxidative stress, and/or hematopoiesis.


Subject(s)
Athletic Performance/physiology , Betalains/administration & dosage , Bicycling/physiology , Dietary Supplements , Oxygen Consumption/drug effects , Performance-Enhancing Substances/administration & dosage , Adult , Cross-Over Studies , Double-Blind Method , Humans , Male , Young Adult
5.
Sci Rep ; 8(1): 11151, 2018 07 24.
Article in English | MEDLINE | ID: mdl-30042516

ABSTRACT

It is currently unclear as to whether sex hormones are significantly affected by soy or whey protein consumption. Additionally, estrogenic signaling may be potentiated via soy protein supplementation due to the presence of phytoestrogenic isoflavones. Limited also evidence suggests that whey protein supplementation may increase androgenic signaling. Therefore, the purpose of this study was to examine the effects of soy protein concentrate (SPC), whey protein concentrate (WPC), or placebo (PLA) supplementation on serum sex hormones, androgen signaling markers in muscle tissue, and estrogen signaling markers in subcutaneous (SQ) adipose tissue of previously untrained, college-aged men (n = 47, 20 ± 1 yrs) that resistance trained for 12 weeks. Fasting serum total testosterone increased pre- to post-training, but more so in subjects consuming WPC (p < 0.05), whereas serum 17ß-estradiol remained unaltered. SQ estrogen receptor alpha (ERα) protein expression and hormone-sensitive lipase mRNA increased with training regardless of supplementation. Muscle androgen receptor (AR) mRNA increased while ornithine decarboxylase mRNA (a gene target indicative of androgen signaling) decreased with training regardless of supplementation (p < 0.05). No significant interactions of supplement and time were observed for adipose tissue ERα/ß protein levels, muscle tissue AR protein levels, or mRNAs in either tissue indicative of altered estrogenic or androgenic activity. Interestingly, WPC had the largest effect on increasing type II muscle fiber cross sectional area values (Cohen's d = 1.30), whereas SPC had the largest effect on increasing this metric in type I fibers (Cohen's d = 0.84). These data suggest that, while isoflavones were detected in SPC, chronic WPC or SPC supplementation did not appreciably affect biomarkers related to muscle androgenic signaling or SQ estrogenic signaling. The noted fiber type-specific responses to WPC and SPC supplementation warrant future research.


Subject(s)
Dietary Supplements , Genistein/administration & dosage , Isoflavones/administration & dosage , Phytoestrogens/administration & dosage , Plant Extracts/administration & dosage , Resistance Training , Soybean Proteins/chemistry , Whey Proteins/chemistry , Adipose Tissue/metabolism , Adult , Estradiol/blood , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Humans , Male , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Muscle, Skeletal/metabolism , Ornithine Decarboxylase/metabolism , Receptors, Androgen/metabolism , Sterol Esterase/metabolism , Testosterone/blood , Young Adult
7.
Sports (Basel) ; 6(1)2018 Jan 09.
Article in English | MEDLINE | ID: mdl-29910305

ABSTRACT

Adopting low carbohydrate, ketogenic diets remains a controversial issue for individuals who resistance train given that this form of dieting has been speculated to reduce skeletal muscle glycogen levels and stifle muscle anabolism. We sought to characterize the effects of a 12-week ketogenic diet (KD) on body composition, metabolic, and performance parameters in participants who trained recreationally at a local CrossFit facility. Twelve participants (nine males and three females, 31 ± 2 years of age, 80.3 ± 5.1 kg body mass, 22.9 ± 2.3% body fat, 1.37 back squat: body mass ratio) were divided into a control group (CTL; n = 5) and a KD group (n = 7). KD participants were given dietary guidelines to follow over 12 weeks while CTL participants were instructed to continue their normal diet throughout the study, and all participants continued their CrossFit training routine for 12 weeks. Pre, 2.5-week, and 12-week anaerobic performance tests were conducted, and pre- and 12-week tests were performed for body composition using dual X-ray absorptiometry (DXA) and ultrasound, resting energy expenditure (REE), blood-serum health markers, and aerobic capacity. Additionally, blood beta hydroxybutyrate (BHB) levels were measured weekly. Blood BHB levels were 2.8- to 9.5-fold higher in KD versus CTL throughout confirming a state of nutritional ketosis. DXA fat mass decreased by 12.4% in KD (p = 0.053). DXA total lean body mass changes were not different between groups, although DXA dual-leg lean mass decreased in the KD group by 1.4% (p = 0.068), and vastus lateralis thickness values decreased in the KD group by ~8% (p = 0.065). Changes in fasting glucose, HDL cholesterol, and triglycerides were similar between groups, although LDL cholesterol increased ~35% in KD (p = 0.048). Between-group changes in REE, one-repetition maximum (1-RM) back squat, 400 m run times, and VO2peak were similar between groups. While our n-sizes were limited, these preliminary data suggest that adopting a ketogenic diet causes marked reductions in whole-body adiposity while not impacting performance measures in recreationally-trained CrossFit trainees. Whether decrements in dual-leg muscle mass and vastus lateralis thickness in KD participants were due to fluid shifts remain unresolved, and increased LDL-C in these individuals warrants further investigation.

8.
J Appl Physiol (1985) ; 125(2): 486-494, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29722624

ABSTRACT

We sought to determine whether age-related gastrocnemius muscle mass loss was associated with parallel decrements in androgen receptor (AR) or select Wnt signaling markers. To test this hypothesis, serum-free and total testosterone (TEST) and gastrocnemius AR and Wnt signaling markers were analyzed in male Fischer 344 rats that were 3, 6, 12, 18, and 24 mo (mo) old ( n = 9 per group). Free and total TEST was greatest in 6 mo rats, and AR protein and Wnt5 protein levels linearly declined with aging. There were associations between Wnt5 protein levels and relative gastrocnemius mass ( r = 0.395, P = 0.007) as well as AR and Wnt5 protein levels (r = 0.670, P < 0.001). We next tested the hypothesis that Wnt5 affects muscle fiber size by treating C2C12-derived myotubes with lower (75 ng/ml) and higher (150 ng/ml) concentrations of recombinant Wnt5a protein. Both treatments increased myotube size ( P < 0.05) suggesting this ligand may affect muscle fiber size in vivo. We next tested if Wnt5a protein levels were androgen-modulated by examining 10-mo-old male Fischer 344 rats ( n = 10-11 per group) that were orchiectomized and treated with testosterone-enanthate (TEST-E); trenbolone enanthate (TREN), a nonaromatizable synthetic testosterone analogue; or a vehicle (ORX only) for 4 wk. Interestingly, TEST-E and TREN treatments increased Wnt5a protein in the androgen-sensitive levator ani/bulbocavernosus muscle compared with ORX only ( P < 0.05). To summarize, aromatizable and nonaromatizable androgens increase Wnt5a protein expression in skeletal muscle, age-related decrements in muscle AR may contribute Wnt5a protein decrements, and our in vitro data imply this mechanism may contribute to age-related muscle loss. NEW & NOTEWORTHY Results from this study demonstrate androgen and Wnt5 protein expression decrease with aging, and this may be a mechanism involved with age-related muscle loss.


Subject(s)
Androgens/metabolism , Atrophy/metabolism , Muscle, Skeletal/metabolism , Wnt Signaling Pathway/physiology , Animals , Male , Muscle Fibers, Skeletal/metabolism , Orchiectomy/methods , Organ Size/physiology , Rats , Rats, Inbred F344 , Receptors, Androgen/metabolism , Testosterone/analogs & derivatives , Testosterone/metabolism , Trenbolone Acetate/metabolism , Wnt-5a Protein/metabolism
9.
PLoS One ; 13(4): e0195203, 2018.
Article in English | MEDLINE | ID: mdl-29621305

ABSTRACT

We sought to identify biomarkers which delineated individual hypertrophic responses to resistance training. Untrained, college-aged males engaged in full-body resistance training (3 d/wk) for 12 weeks. Body composition via dual x-ray absorptiometry (DXA), vastus lateralis (VL) thickness via ultrasound, blood, VL muscle biopsies, and three-repetition maximum (3-RM) squat strength were obtained prior to (PRE) and following (POST) 12 weeks of training. K-means cluster analysis based on VL thickness changes identified LOW [n = 17; change (mean±SD) = +0.11±0.14 cm], modest (MOD; n = 29, +0.40±0.06 cm), and high (HI; n = 21, +0.69±0.14 cm) responders. Biomarkers related to histology, ribosome biogenesis, proteolysis, inflammation, and androgen signaling were analyzed between clusters. There were main effects of time (POST>PRE, p<0.05) but no cluster×time interactions for increases in DXA lean body mass, type I and II muscle fiber cross sectional area and myonuclear number, satellite cell number, and macronutrients consumed. Interestingly, PRE VL thickness was ~12% greater in LOW versus HI (p = 0.021), despite POST values being ~12% greater in HI versus LOW (p = 0.006). However there was only a weak correlation between PRE VL thickness scores and change in VL thickness (r2 = 0.114, p = 0.005). Forced post hoc analysis indicated that muscle total RNA levels (i.e., ribosome density) did not significantly increase in the LOW cluster (351±70 ng/mg to 380±62, p = 0.253), but increased in the MOD (369±115 to 429±92, p = 0.009) and HI clusters (356±77 to 470±134, p<0.001; POST HI>POST LOW, p = 0.013). Nonetheless, there was only a weak association between change in muscle total RNA and VL thickness (r2 = 0.079, p = 0.026). IL-1ß mRNA levels decreased in the MOD and HI clusters following training (p<0.05), although associations between this marker and VL thickness changes were not significant (r2 = 0.0002, p = 0.919). In conclusion, individuals with lower pre-training VL thickness values and greater increases muscle total RNA levels following 12 weeks of resistance training experienced greater VL muscle growth, although these biomarkers individually explained only ~8-11% of the variance in hypertrophy.


Subject(s)
Biomarkers , Exercise , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/physiology , Resistance Training , Adult , Androgens/metabolism , Body Composition , Cluster Analysis , Gene Expression , Humans , Hypertrophy , Micronutrients , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/physiology , Muscle Strength , Muscle, Skeletal/diagnostic imaging , Ribosomes , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/physiology , Self Report , Signal Transduction , Ultrasonography , Young Adult
10.
Am J Physiol Cell Physiol ; 314(3): C379-C388, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29351416

ABSTRACT

Herein, we examined if acute or chronic resistance exercise affected markers of skeletal muscle long interspersed nuclear element-1 (LINE-1) retrotransposon activity. In study 1, 10 resistance-trained college-aged men performed three consecutive daily back squat sessions, and vastus lateralis biopsies were taken before (Pre), 2 h following session 1 (Post1), and 3 days following session 3 (Post2). In study 2, 13 untrained college-aged men performed a full-body resistance training program (3 days/wk), and vastus lateralis biopsies were taken before ( week 0) and ~72 h following training cessation ( week 12). In study 1, LINE-1 mRNA decreased 42-48% at Post1 and 2 ( P < 0.05), and reverse transcriptase (RT) activity trended downward at Post2 (-37%, P = 0.067). In study 2, LINE-1 mRNA trended downward at week 12 (-17%, P = 0.056) while LINE-1 promoter methylation increased (+142%, P = 0.041). Open reading frame (ORF)2p protein expression (-24%, P = 0.059) and RT activity (-26%, P = 0.063) also trended downward by week 12. Additionally, changes in RT activity versus satellite cell number were inversely associated ( r = -0.725, P = 0.008). Follow-up in vitro experiments demonstrated that 48-h treatments with lower doses (1 µM and 10 µM) of efavirenz and nevirapine (non-nucleoside RT inhibitors) increased myoblast proliferation ( P < 0.05). However, we observed a paradoxical decrease in myoblast proliferation with higher doses (50 µM) of efavirenz and delavirdine. This is the first report suggesting that resistance exercise downregulates markers of skeletal muscle LINE-1 activity. Given our discordant in vitro findings, future research is needed to thoroughly assess whether LINE-1-mediated RT activity enhances or blunts myoblast, or primary satellite cell, proliferative capacity.


Subject(s)
Cell Proliferation , Long Interspersed Nucleotide Elements , Muscle Contraction , Quadriceps Muscle/metabolism , RNA, Messenger/metabolism , Resistance Training/methods , Satellite Cells, Skeletal Muscle/metabolism , Animals , Cell Line , Cell Proliferation/drug effects , Down-Regulation , Endonucleases/genetics , Endonucleases/metabolism , Humans , Male , Mice , Quadriceps Muscle/drug effects , RNA, Messenger/genetics , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism , Reverse Transcriptase Inhibitors/pharmacology , Satellite Cells, Skeletal Muscle/drug effects , Time Factors , Young Adult
11.
Eur J Appl Physiol ; 117(12): 2587-2600, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29075862

ABSTRACT

PURPOSE: To compare the effects of external pneumatic compression (EPC) and sham when used concurrently with high intensity interval training (HIIT) on performance-related outcomes and recovery-related molecular measures. METHODS: Eighteen recreationally endurance-trained male participants (age: 21.6 ± 2.4 years, BMI: 25.7 ± 0.5 kg/m2, VO2peak: 51.3 ± 0.9 mL/kg/min) were randomized to balanced sham and EPC treatment groups. Three consecutive days of HIIT followed by EPC/sham treatment (Days 2-4) and 3 consecutive days of recovery (Days 5-7) with EPC/sham only on Days 5-6 were employed. Venipuncture, flexibility and pressure-to-pain threshold (PPT) measurements were made throughout. Vastus lateralis muscle was biopsied at PRE (i.e., Day 1), 1-h post-EPC/sham treatment on Day 2 (POST1), and 24-h post-EPC/sham treatment on Day 7 (POST2). 6-km run time trial performance was tested at PRE and POST2. RESULTS: No group × time interaction was observed for flexibility, PPT, or serum measures of creatine kinase (CK), hsCRP, and 8-isoprostane. However, there was a main effect of time for serum CK (p = 0.005). Change from PRE in 6-km run times at POST2 were not significantly different between groups. Significant between-groups differences existed for change from PRE in atrogin-1 mRNA (p = 0.018) at the POST1 time point (EPC: - 19.7 ± 8.1%, sham: + 7.7 ± 5.9%) and atrogin-1 protein concentration (p = 0.013) at the POST2 time point (EPC: - 31.8 ± 7.5%, sham: + 96.0 ± 34.7%). In addition, change from PRE in poly-Ub proteins was significantly different between groups at both the POST1 (EPC: - 26.0 ± 10.3%, sham: + 34.8 ± 28.5%; p = 0.046) and POST2 (EPC: - 33.7 ± 17.2%, sham: + 21.4 ± 14.9%; p = 0.037) time points. CONCLUSIONS: EPC when used concurrently with HIIT and in subsequent recovery days reduces skeletal muscle markers of proteolysis.


Subject(s)
High-Intensity Interval Training/methods , Intermittent Pneumatic Compression Devices/adverse effects , Proteolysis , Adult , C-Reactive Protein/metabolism , Creatine Kinase/blood , Dinoprost/analogs & derivatives , Dinoprost/blood , High-Intensity Interval Training/adverse effects , Humans , Male , Muscle Proteins/metabolism , Quadriceps Muscle/blood supply , Quadriceps Muscle/metabolism , Quadriceps Muscle/physiology , SKP Cullin F-Box Protein Ligases/metabolism , Ubiquitination
12.
Physiol Rep ; 5(18)2017 Sep.
Article in English | MEDLINE | ID: mdl-28963127

ABSTRACT

Recent evidence suggests that resistance training with light or heavy loads to failure results in similar adaptations. Herein, we compared how both training modalities affect the molecular, neuromuscular, and recovery responses following exercise. Resistance-trained males (mean ± SE: 22 ± 2 years, 84.8 ± 9.0 kg, 1.79 ± 0.06 m; n = 15) performed a crossover design of four sets of leg extensor exercise at 30% (light RE) or 80% (heavy RE) one repetition maximum (1RM) to repetition failure, and heavy RE or light RE 1 week later. Surface electromyography (EMG) was monitored during exercise, and vastus lateralis muscle biopsies were collected at baseline (PRE), 15 min (15mPOST), and 90 min following RE (90mPOST) for examination of molecular targets and fiber typing. Isokinetic dynamometry was also performed before (PRE), immediately after (POST), and 48 h after (48hPOST) exercise. Dependent variables were analyzed using repeated measures ANOVAs and significance was set at P ≤ 0.05. Repetitions completed were greater during light RE (P < 0.01), while EMG amplitude was greater during heavy RE (P ≤ 0.01). POST isokinetic torque was reduced following light versus heavy RE (P < 0.05). Postexercise expression of mRNAs and phosphoproteins associated with muscle hypertrophy were similar between load conditions. Additionally, p70s6k (Thr389) phosphorylation and fast-twitch fiber proportion exhibited a strong relationship after both light and heavy RE (r > 0.5). While similar mRNA and phosphoprotein responses to both modalities occurred, we posit that heavy RE is a more time-efficient training method given the differences in total repetitions completed, lower EMG amplitude during light RE, and impaired recovery response after light RE.


Subject(s)
Quadriceps Muscle/physiology , Resistance Training/methods , Humans , Male , Muscle Contraction , Quadriceps Muscle/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Resistance Training/adverse effects , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Young Adult
13.
Nutrients ; 9(9)2017 Sep 04.
Article in English | MEDLINE | ID: mdl-28869573

ABSTRACT

We sought to determine the effects of L-leucine (LEU) or different protein supplements standardized to LEU (~3.0 g/serving) on changes in body composition, strength, and histological attributes in skeletal muscle and adipose tissue. Seventy-five untrained, college-aged males (mean ± standard error of the mean (SE); age = 21 ± 1 years, body mass = 79.2 ± 0.3 kg) were randomly assigned to an isocaloric, lipid-, and organoleptically-matched maltodextrin placebo (PLA, n = 15), LEU (n = 14), whey protein concentrate (WPC, n = 17), whey protein hydrolysate (WPH, n = 14), or soy protein concentrate (SPC, n = 15) group. Participants performed whole-body resistance training three days per week for 12 weeks while consuming supplements twice daily. Skeletal muscle and subcutaneous (SQ) fat biopsies were obtained at baseline (T1) and ~72 h following the last day of training (T39). Tissue samples were analyzed for changes in type I and II fiber cross sectional area (CSA), non-fiber specific satellite cell count, and SQ adipocyte CSA. On average, all supplement groups including PLA exhibited similar training volumes and experienced statistically similar increases in total body skeletal muscle mass determined by dual X-ray absorptiometry (+2.2 kg; time p = 0.024) and type I and II fiber CSA increases (+394 µm² and +927 µm²; time p < 0.001 and 0.024, respectively). Notably, all groups reported increasing Calorie intakes ~600-800 kcal/day from T1 to T39 (time p < 0.001), and all groups consumed at least 1.1 g/kg/day of protein at T1 and 1.3 g/kg/day at T39. There was a training, but no supplementation, effect regarding the reduction in SQ adipocyte CSA (-210 µm²; time p = 0.001). Interestingly, satellite cell counts within the WPC (p < 0.05) and WPH (p < 0.05) groups were greater at T39 relative to T1. In summary, LEU or protein supplementation (standardized to LEU content) does not provide added benefit in increasing whole-body skeletal muscle mass or strength above PLA following 3 months of training in previously untrained college-aged males that increase Calorie intakes with resistance training and consume above the recommended daily intake of protein throughout training. However, whey protein supplementation increases skeletal muscle satellite cell number in this population, and this phenomena may promote more favorable training adaptations over more prolonged periods.


Subject(s)
Adiposity , Dietary Proteins/administration & dosage , Dietary Supplements , Leucine/administration & dosage , Muscle Strength , Protein Hydrolysates/administration & dosage , Quadriceps Muscle/physiology , Resistance Training , Soybean Proteins/administration & dosage , Subcutaneous Fat/physiology , Whey Proteins/administration & dosage , Absorptiometry, Photon , Alabama , Biopsy , Dietary Proteins/adverse effects , Dietary Supplements/adverse effects , Double-Blind Method , Energy Intake , Humans , Leucine/adverse effects , Male , Protein Hydrolysates/adverse effects , Quadriceps Muscle/cytology , Quadriceps Muscle/diagnostic imaging , Soybean Proteins/adverse effects , Subcutaneous Fat/cytology , Subcutaneous Fat/diagnostic imaging , Time Factors , Treatment Outcome , Ultrasonography , Whey Proteins/adverse effects , Young Adult
14.
Nutrients ; 9(9)2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28914762

ABSTRACT

We determined the short- and long-term effects of a ketogenic diet (KD) or ketone salt (KS) supplementation on multi-organ oxidative stress and mitochondrial markers. For short-term feedings, 4 month-old male rats were provided isocaloric amounts of KD (n = 10), standard chow (SC) (n = 10) or SC + KS (~1.2 g/day, n = 10). For long-term feedings, 4 month-old male rats were provided KD (n = 8), SC (n = 7) or SC + KS (n = 7) for 8 months and rotarod tested every 2 months. Blood, brain (whole cortex), liver and gastrocnemius muscle were harvested from all rats for biochemical analyses. Additionally, mitochondria from the brain, muscle and liver tissue of long-term-fed rats were analyzed for mitochondrial quantity (maximal citrate synthase activity), quality (state 3 and 4 respiration) and reactive oxygen species (ROS) assays. Liver antioxidant capacity trended higher in short-term KD- and SC + KS-fed versus SC-fed rats, and short-term KD-fed rats exhibited significantly greater serum ketones compared to SC + KS-fed rats indicating that the diet (not KS supplementation) induced ketonemia. In long term-fed rats: (a) serum ketones were significantly greater in KD- versus SC- and SC + KS-fed rats; (b) liver antioxidant capacity and glutathione peroxidase protein was significantly greater in KD- versus SC-fed rats, respectively, while liver protein carbonyls were lowest in KD-fed rats; and (c) gastrocnemius mitochondrial ROS production was significantly greater in KD-fed rats versus other groups, and this paralleled lower mitochondrial glutathione levels. Additionally, the gastrocnemius pyruvate-malate mitochondrial respiratory control ratio was significantly impaired in long-term KD-fed rats, and gastrocnemius mitochondrial quantity was lowest in these animals. Rotarod performance was greatest in KD-fed rats versus all other groups at 2, 4 and 8 months, although there was a significant age-related decline in performance existed in KD-fed rats which was not evident in the other two groups. In conclusion, short- and long-term KD improves select markers of liver oxidative stress compared to SC feeding, although long-term KD feeding may negatively affect skeletal muscle mitochondrial physiology.


Subject(s)
Biomarkers/blood , Diet, Ketogenic , Ketones/administration & dosage , Mitochondria/metabolism , Oxidative Stress , Salts/administration & dosage , 3-Hydroxybutyric Acid/blood , Animals , Body Mass Index , Male , Rats , Rats, Inbred F344 , Reactive Oxygen Species/metabolism , Time Factors
15.
Front Physiol ; 8: 518, 2017.
Article in English | MEDLINE | ID: mdl-28775694

ABSTRACT

Alterations in transcriptional and translational mechanisms occur during skeletal muscle aging and such changes may contribute to age-related atrophy. Herein, we examined markers related to global transcriptional output (i.e., myonuclear number, total mRNA and RNA pol II levels), translational efficiency [i.e., eukaryotic initiation and elongation factor levels and muscle protein synthesis (MPS) levels] and translational capacity (ribosome density) in the slow-twitch soleus and fast-twitch plantaris muscles of male Fischer 344 rats aged 3, 6, 12, 18, and 24 months (n = 9-10 per group). We also examined alterations in markers of proteolysis and oxidative stress in these muscles (i.e., 20S proteasome activity, poly-ubiquinated protein levels and 4-HNE levels). Notable plantaris muscle observations included: (a) fiber cross sectional area (CSA) was 59% (p < 0.05) and 48% (p < 0.05) greater in 12 month vs. 3 month and 24 month rats, respectively, suggesting a peak lifetime value near 12 months and age-related atrophy by 24 months, (b) MPS levels were greatest in 18 month rats (p < 0.05) despite the onset of atrophy, (c) while regulators of ribosome biogenesis [c-Myc and upstream binding factor (UBF) protein levels] generally increased with age, ribosome density linearly decreased from 3 months of age and RNA polymerase (Pol) I protein levels were lowest in 24 month rats, and d) 20S proteasome activity was robustly up-regulated in 6 and 24 month rats (p < 0.05). Notable soleus muscle observations included: (a) fiber CSA was greatest in 6 month rats and was maintained in older age groups, and (b) 20S proteasome activity was modestly but significantly greater in 24 month vs. 3/12/18 month rats (p < 0.05), and (c) total mRNA levels (suggestive of transcriptional output) trended downward in older rats despite non-significant between-group differences in myonuclear number and/or RNA Pol II protein levels. Collectively, these findings suggest that plantaris, not soleus, atrophy occurs following 12 months of age in male Fisher rats and this may be due to translational deficits (i.e., changes in MPS and ribosome density) and/or increases in proteolysis rather than increased oxidative stress and/or alterations in global transcriptional mechanisms.

16.
J Diet Suppl ; 14(6): 653-666, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28388294

ABSTRACT

The increasing interest in weight loss has seen a concurrent rise in the supplemental use of thermogenics to aid weight loss efforts. To date, the effectiveness and safety of supplemental proprietary blend thermogenics, in conjunction with high-protein energy-restricted diets have not been thoroughly evaluated. The purpose of this study was to investigate the efficacy of a low-calorie, high-protein diet with and without the concomitant use of a thermogenic supplement on body weight and body composition in apparently healthy females. Subjects were divided into three groups, Bizzy Diet+FitMiss Burn (BURN, N = 12), Bizzy Diet+Placebo (PLA, N = 13), and Control (CON, N = 14), and underwent two testing sessions separated by approximately 3 weeks. Resting blood pressure (BP), resting heart rate (RHR), clinical safety markers, body weight (BW), and body composition were assessed during each testing session. Repeated measures analysis of variance (ANOVA) revealed a significant effect for time relative to BW, total body fat mass (FM), leg FM, and trunk FM. Post hoc analysis revealed that the BURN and PLA groups experienced significant decreases in both BW and total body FM compared to CON (p <.05). There were no significant interactions for BP, RHR, or clinical safety markers over the course of the study. The Bizzy Diet, both with and without the addition of FitMiss Burn thermogenic, appears to be safe for short-term use and may lead to greater improvement in body composition and BW in an apparently healthy female population.


Subject(s)
Caloric Restriction , Diet, Reducing , Dietary Supplements , Micronutrients/administration & dosage , Adolescent , Adult , Blood Pressure/drug effects , Body Composition , Body Mass Index , Diet, High-Protein , Double-Blind Method , Exercise , Female , Humans , Thermogenesis , Young Adult
17.
Appetite ; 113: 264-273, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28235621

ABSTRACT

We examined if 12 weeks of capsaicinoid (CAP) supplementation affected appetite, body composition and metabolic health markers. Seventy seven healthy male and female volunteers (30 ± 1 y, 171.2 ± 9.8 cm, 81.0 ± 2.2 kg, 27.5 ± 0.6 kg/m2) were randomly assigned to ingest either low-dose CAP (2 mg/d; L-CAP, n = 27), high-dose CAP (4 mg/d; H-CAP, n = 22) from Capsimax or placebo (corn starch; PLA, n = 28) for 12 weeks. At baseline (0 WK), 6 weeks (6 WK) and 12 weeks (12 WK) waist: hip ratio, body composition via dual energy x-ray absorptiometry (DEXA, 0 WK and 12 WK only), self-reported Calorie intakes, appetite levels via Council on Nutrition Appetite Questionnaire (CNAQ) and serum metabolic health markers (0 WK and 12 WK only) were analyzed. Moreover, an oral glucose tolerance test (OGTT) was administered at 0 WK and 12 WK, and serum glucose and insulin responses were examined 30-120 min post test-drink consumption. Waist: hip ratio significantly decreased in L-CAP from 0 WK to 6 WK (p < 0.05), although supplementation did not significantly affect body composition. H-CAP consumed less kcal/d compared to PLA at 12 WK (difference = 257 kcal/d, p < 0.05) and L-CAP participants at 12 WK (difference = 247, p < 0.05). Twenty-three percent (9/39) of the originally-enrolled H-CAP participants reported GI distress, although no participants in the L-CAP group reported such adverse events. Interestingly, H-CAP participants presented significant increases in serum insulin as well as significant decreases in serum HDL cholesterol levels from WK0 to WK12. However, supplementation did not affect the insulin response to the administered OGTT and/or other indices of insulin sensitivity. These data suggest that H-CAP supplementation reduces self-reported energy intake after 12 weeks of supplementation, and L-CAP supplementation also reduces waist: hip ratio. Longer-term effects of capsaicinoid supplementation on basal insulin and cholesterol levels warrant further investigation.


Subject(s)
Appetite/drug effects , Body Composition/drug effects , Capsaicin/pharmacology , Dietary Supplements , Overweight/therapy , Adult , Blood Glucose/analysis , Cholesterol/blood , Energy Intake/drug effects , Female , Glucose Tolerance Test , Healthy Volunteers , Humans , Insulin/blood , Insulin Resistance/physiology , Male , Overweight/blood , Waist-Hip Ratio
18.
Sports (Basel) ; 5(4)2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29910440

ABSTRACT

Background: We examined the acute effect of a red spinach extract (RSE) (1000 mg dose; ~90 mg nitrate (NO 3 - )) on performance markers during graded exercise testing (GXT). Methods: For this randomized, double-blind, placebo (PBO)-controlled, crossover study, 15 recreationally-active participants (aged 23.1 ± 3.3 years; BMI: 27.2 ± 3.7 kg/m²) reported >2 h post-prandial and performed GXT 65⁻75 min post-RSE or PBO ingestion. Blood samples were collected at baseline (BL), pre-GXT (65⁻75 min post-ingestion; PRE), and immediately post-GXT (POST). GXT commenced with continuous analysis of expired gases. Results: Plasma concentrations of NO 3 - increased PRE (+447 ± 294%; p < 0.001) and POST (+378 ± 179%; p < 0.001) GXT with RSE, but not with PBO (+3 ± 26%, -8 ± 24%, respectively; p > 0.05). No effect on circulating nitrite (NO 2 - ) was observed with RSE (+3.3 ± 7.5%, +7.7 ± 11.8% PRE and POST, respectively; p > 0.05) or PBO (-0.5 ± 7.9%, -0.2 ± 8.1% PRE and POST, respectively; p > 0.05). When compared to PBO, there was a moderate effect of RSE on plasma NO 2 - at PRE (g = 0.50 [-0.26, 1.24] and POST g = 0.71 [-0.05, 1.48]). During GXT, VO2 at the ventilatory threshold was significantly higher with RSE compared to PBO (+6.1 ± 7.3%; p < 0.05), though time-to-exhaustion (-4.0 ± 7.7%; p > 0.05) and maximal aerobic power (i.e., VO2 peak; -0.8 ± 5.6%; p > 0.05) were non-significantly lower with RSE. Conclusions: RSE as a nutritional supplement may elicit an ergogenic response by delaying the ventilatory threshold.

19.
Front Physiol ; 7: 533, 2016.
Article in English | MEDLINE | ID: mdl-27877138

ABSTRACT

Purpose: Ketogenic diets (KD) can facilitate weight loss, but their effects on skeletal muscle remain equivocal. In this experiment we investigated the effects of two diets on skeletal muscle mitochondrial coupling, mitochondrial complex activity, markers of oxidative stress, and gene expression in sedentary and resistance exercised rats. Methods: Male Sprague-Dawley rats (9-10 weeks of age, 300-325 g) were fed isocaloric amounts of either a KD (17 g/day, 5.2 kcal/g, 20.2% protein, 10.3% CHO, 69.5% fat, n = 16) or a Western diet (WD) (20 g/day, 4.5 kcal/g, 15.2% protein, 42.7% CHO, 42.0% fat, n = 16) for 6 weeks. During these 6 weeks animals were either sedentary (SED, n = 8 per diet group) or voluntarily exercised using resistance-loaded running wheels (EXE, n = 8 per diet group). Gastrocnemius was excised and used for mitochondrial isolation and biochemical analyses. Results: In the presence of a complex II substrate, the respiratory control ratio (RCR) of isolated gastrocnemius mitochondria was higher (p < 0.05) in animals fed the KD compared to animals fed the WD. Complex I and IV enzyme activity was higher (p < 0.05) in EXE animals regardless of diet. SOD2 protein levels and GLUT4 and PGC1α mRNA expression were higher (p < 0.05) in EXE animals regardless of diet. Conclusion: Our data indicate that skeletal muscle mitochondrial coupling of complex II substrates is more efficient in chronically resistance trained rodents fed a KD. These findings may provide merit for further investigation, perhaps on humans.

20.
Physiol Rep ; 4(22)2016 11.
Article in English | MEDLINE | ID: mdl-27884954

ABSTRACT

Next-generation RNA sequencing was employed to determine the acute and subchronic impact of peristaltic pulse external pneumatic compression (PEPC) of different target inflation pressures on global gene expression in human vastus lateralis skeletal muscle biopsy samples. Eighteen (N = 18) male participants were randomly assigned to one of the three groups: (1) sham (n = 6), 2) EPC at 30-40 mmHg (LP-EPC; n = 6), and 3) EPC at 70-80 mmHg (MP-EPC; n = 6). One hour treatment with sham/EPC occurred for seven consecutive days. Vastus lateralis skeletal muscle biopsies were performed at baseline (before first treatment; PRE), 1 h following the first treatment (POST1), and 24 h following the last (7th) treatment (POST2). Changes from PRE in gene expression were analyzed via paired comparisons within each group. Genes were filtered to include only those that had an RPKM ≥ 1.0, a fold-change of ≥1.5 and a paired t-test value of <0.01. For the sham condition, two genes at POST1 and one gene at POST2 were significantly altered. For the LP-EPC condition, nine genes were up-regulated and 0 genes were down-regulated at POST1 while 39 genes were up-regulated and one gene down-regulated at POST2. For the MP-EPC condition, two genes were significantly up-regulated and 21 genes were down-regulated at POST1 and 0 genes were altered at POST2. Both LP-EPC and MP-EPC acutely alter skeletal muscle gene expression, though only LP-EPC appeared to affect gene expression with subchronic application. Moreover, the transcriptome response to EPC demonstrated marked heterogeneity (i.e., genes and directionality) with different target inflation pressures.


Subject(s)
Intermittent Pneumatic Compression Devices/adverse effects , Muscle, Skeletal/metabolism , Pressure , RNA/genetics , Transcriptome/genetics , Adult , Biopsy/methods , Citrate (si)-Synthase/metabolism , Humans , Male , Muscle, Skeletal/blood supply , Muscle, Skeletal/pathology , Oxidation-Reduction , Peristalsis/physiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Transcriptional Activation , Up-Regulation/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...