Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 7(46): 25865-74, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26540316

ABSTRACT

Herein, the ability of gamma irradiation to enhance the photoluminescence properties of graphene quantum dots (GQDs) was investigated. Different doses of γ-irradiation were used on GQDs to examine the way in which their structure and optical properties can be affected. The photoluminescence quantum yield was increased six times for the GQDs irradiated with high doses compared to the nonirradiated material. Both photoluminescence lifetime and values of optical band gap were increased with the dose of applied gamma irradiation. In addition, the exploitation of the gamma-irradiated GQDs as photosensitizers was examined by monitoring the production of singlet oxygen under UV illumination. The main outcome was that the GQDs irradiated at lower doses act as better photoproducers than the ones irradiated at higher doses. These results corroborate that the structural changes caused by gamma irradiation have a direct impact on GQD ability to produce singlet oxygen and their photostability under prolonged UV illumination. This makes low-dose irradiated GQDs promising candidates for photodynamic therapy.


Subject(s)
Gamma Rays , Graphite/chemistry , Luminescence , Photochemotherapy/methods , Quantum Dots/chemistry , Electron Spin Resonance Spectroscopy , Microscopy, Atomic Force , Particle Size , Photosensitizing Agents/pharmacology , Singlet Oxygen/chemistry , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared
2.
Biomaterials ; 33(29): 7084-92, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22795854

ABSTRACT

The excellent photoluminescent properties of graphene quantum dots (GQD) makes them suitable candidates for biomedical applications, but their cytotoxicity has not been extensively studied. Here we show that electrochemically produced GQD irradiated with blue light (470 nm, 1W) generate reactive oxygen species, including singlet oxygen, and kill U251 human glioma cells by causing oxidative stress. The cell death induced by photoexcited GQD displayed morphological and/or biochemical characteristics of both apoptosis (phosphatidylserine externalization, caspase activation, DNA fragmentation) and autophagy (formation of autophagic vesicles, LC3-I/LC3-II conversion, degradation of autophagic target p62). Moreover, a genetic inactivation of autophagy-essential LC3B protein partly abrogated the photodynamic cytotoxicity of GQD. These data indicate potential usefulness of GQD in photodynamic therapy, but also raise concerns about their possible toxicity.


Subject(s)
Graphite/chemistry , Photosensitizing Agents/pharmacology , Quantum Dots , Apoptosis , Autophagy , Caspases/metabolism , Cell Line, Tumor , Cell Survival , DNA Fragmentation , Dose-Response Relationship, Drug , Electrochemistry/methods , Enzyme Activation , Flow Cytometry/methods , Humans , Luminescence , Microscopy, Electron, Transmission/methods , Oxidative Stress , Oxygen/chemistry , RNA Interference , Time Factors
3.
Biomaterials ; 32(4): 1121-9, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21071083

ABSTRACT

The present study compared the photothermal anticancer activity of near-infrared (NIR)-excited graphene nanoparticles and carbon nanotubes (CNT). Despite lower NIR-absorbing capacity, suspension of polyvinylpyrrolidone-coated graphene sheets exposed to NIR radiation (808 nm, 2 W/cm(2)) generated more heat than DNA or sodium dodecylbenzenesulfonate-solubilized single-wall CNT under the same conditions. Accordingly, graphene nanoparticles performed significantly better than CNT in inducing photothermal death of U251 human glioma cells in vitro. The superior photothermal sensitivity of graphene sheets could be largely explained by their better dispersivity, which has been supported by a simple calculation taking into account thermodynamic, optical and geometrical properties of the two type of carbon nanoparticles. The mechanisms of graphene-mediated photothermal killing of cancer cells apparently involved oxidative stress and mitochondrial membrane depolarization resulting in mixed apoptotic and necrotic cell death characterized by caspase activation/DNA fragmentation and cell membrane damage, respectively.


Subject(s)
Cell Line, Tumor/drug effects , Cell Line, Tumor/radiation effects , Graphite/pharmacology , Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Biocompatible Materials/chemistry , Humans , Lasers , Light , Materials Testing , Microscopy, Atomic Force , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...