Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 50(3): e53-e61, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36705550

ABSTRACT

Over several months, representatives from the U.S. Department of Energy (DOE) Office of Science and National Institutes of Health (NIH) had a number of meetings that lead to the conclusion that innovations in the Nation's health care could be realized by more directed interactions between NIH and DOE. It became clear that the expertise amassed and instrumentation advances developed at the DOE physical science laboratories to enable cutting-edge research in particle physics could also feed innovation in medical healthcare. To meet their scientific mission, the DOE laboratories created advances in such technologies as particle beam generation, radioisotope production, high-energy particle detection and imaging, superconducting particle accelerators, superconducting magnets, cryogenics, high-speed electronics, artificial intelligence, and big data. To move forward, NIH and DOE initiated the process of convening a joint workshop which occurred on July 12th and 13th, 2021. This Special Report presents a summary of the findings of the collaborative workshop and introduces the goals of the next one.


Subject(s)
Biomedical Research , Natural Science Disciplines , United States , Artificial Intelligence , National Institutes of Health (U.S.) , Laboratories
2.
Radiat Res ; 197(4): 434-445, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35090025

ABSTRACT

With a widely attended virtual kickoff event on January 29, 2021, the National Cancer Institute (NCI) and the Department of Energy (DOE) launched a series of 4 interactive, interdisciplinary workshops-and a final concluding "World Café" on March 29, 2021-focused on advancing computational approaches for predictive oncology in the clinical and research domains of radiation oncology. These events reflect 3,870 human hours of virtual engagement with representation from 8 DOE national laboratories and the Frederick National Laboratory for Cancer Research (FNL), 4 research institutes, 5 cancer centers, 17 medical schools and teaching hospitals, 5 companies, 5 federal agencies, 3 research centers, and 27 universities. Here we summarize the workshops by first describing the background for the workshops. Participants identified twelve key questions-and collaborative parallel ideas-as the focus of work going forward to advance the field. These were then used to define short-term and longer-term "Blue Sky" goals. In addition, the group determined key success factors for predictive oncology in the context of radiation oncology, if not the future of all of medicine. These are: cross-discipline collaboration, targeted talent development, development of mechanistic mathematical and computational models and tools, and access to high-quality multiscale data that bridges mechanisms to phenotype. The workshop participants reported feeling energized and highly motivated to pursue next steps together to address the unmet needs in radiation oncology specifically and in cancer research generally and that NCI and DOE project goals align at the convergence of radiation therapy and advanced computing.


Subject(s)
Radiation Oncology , Academies and Institutes , Humans , National Cancer Institute (U.S.) , Radiation Oncology/education , United States
3.
Int J Part Ther ; 7(4): 11-18, 2021.
Article in English | MEDLINE | ID: mdl-33829069

ABSTRACT

PURPOSE: Proton therapy precisely delivers radiation to cancers to cause damaging strand breaks to cellular DNA, kill malignant cells, and stop tumor growth. Therapeutic protons also generate short-lived activated nuclei of carbon, oxygen, and nitrogen atoms in patients as a result of atomic transmutations that are imaged by positron emission tomography (PET). We hypothesized that the transition of 18O to 18F in an 18O-substituted nucleoside irradiated with therapeutic protons may result in the potential for combined diagnosis and treatment for cancer with proton therapy. MATERIALS AND METHODS: Reported here is a feasibility study with a therapeutic proton beam used to irradiate H2 18O to a dose of 10 Gy produced by an 85 MeV pristine Bragg peak. PET imaging initiated >45 minutes later showed an 18F decay signal with T1/2 of ∼111 minutes. RESULTS: The 18O to 18F transmutation effect on cell survival was tested by exposing SQ20B squamous carcinoma cells to physiologic 18O-thymidine concentrations of 5 µM for 48 hours followed by 1- to 9-Gy graded doses of proton radiation given 24 hours later. Survival analyses show radiation sensitization with a dose modification factor (DMF) of 1.2. CONCLUSIONS: These data support the idea of therapeutic transmutation in vitro as a biochemical consequence of proton activation of 18O to 18F in substituted thymidine enabling proton radiation enhancement in a cancer cell. 18O-substituted molecules that incorporate into cancer targets may hold promise for improving the therapeutic window of protons and can be evaluated further for postproton therapy PET imaging.

4.
Radiat Res ; 179(1): 21-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23148508

ABSTRACT

Considerable evidence now exists to show that that the relative biological effectiveness (RBE) changes considerably along the proton depth-dose distribution, with progressively higher RBE values at the distal part of the modulated, or spread out Bragg peak (SOBP) and in the distal dose fall-off (DDF). However, the highly variable nature of the existing studies (with regards to cell lines, and to the physical properties and dosimetry of the various proton beams) precludes any consensus regarding the RBE weighting factor at any position in the depth-dose profile. We have thus conducted a systematic study on the variation in RBE for cell killing for two clinical modulated proton beams at Indiana University and have determined the relationship between the RBE and the dose-averaged linear energy transfer (LETd) of the protons at various positions along the depth-dose profiles. Clonogenic assays were performed on human Hep2 laryngeal cancer cells and V79 cells at various positions along the SOBPs of beams with incident energies of 87 and 200 MeV. There was a marked variation in the radiosensitivity of both cell lines along the SOBP depth-dose profile of the 87 MeV proton beam. Using Hep2 cells, the D(0.1) isoeffect dose RBE values (normalized against (60)Co) were 1.46 at the middle of SOBP, 2.1 at the distal end of the SOBP and 2.3 in the DDF. For V79 cells, the D(0.1) isoeffect RBE for the 87 MEV beam were 1.23 for the proximal end of the SOBP: 1.46 for the distal SOBP and 1.78 for the DDF. Similar D(0.1) isoeffect RBE values were found for Hep2 cells irradiated at various positions along the depth-dose profile of the 200 MeV beam. Our experimentally derived RBE values were significantly correlated (P = 0.001) with the mean LETd of the protons at the various depths, which confirmed that proton RBE is highly dependent on LETd. These in vitro data suggest that the RBE of the proton beam at certain depths is greater than 1.1, a value currently used in most treatment planning algorithms. Thus, the potential for increased cell killing and normal tissue damage in the distal regions of the proton SOBP may be greater than originally thought.


Subject(s)
Proton Therapy , Animals , Cell Death/radiation effects , Cell Line, Tumor , Cricetinae , Dose-Response Relationship, Radiation , Humans , Linear Energy Transfer , Radiation Tolerance , Radiometry , Relative Biological Effectiveness , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL