ABSTRACT
A state-of-the-art method was developed for repurposing nitrone-containing compounds in the chemosensory field, the ability of the designed molecules to chelate metal cations was evaluated, and their unprecedented solubility in water was confirmed. A facile, rapid, and solvent-free method of synthesizing small molecular mass chemosensors was developed by using a modulative α-aryl-N-aryl nitrone template. α-(Z)-Imidazol-4-ylmethylen-N-phenyl nitrone (Nit1) and α-(Z)-2-pyridyl-N-phenyl nitrone (Nit2) were prepared in 15 min, isolated in less than 60 min with ca. 90% yield, and screened against nine metal cations. Nit1 is a small-molecular-mass compound (188 g mol-1) that is water-soluble and has specificity for sensing Cu2+ with an association constant of K = 1.53 × 1010 and a limit of detection (LOD) of 0.06 ppm. These properties make Nit1 a competitive chemosensor for the detection of Cu2+ in aqueous solution. The nitrone-containing template used in this study is a step forward for new and small chemosensory entities.
Subject(s)
Nitrogen Oxides , Water , Limit of Detection , SolventsABSTRACT
Artificial photosynthesis enables the conversion and storage of solar energy into chemical energy, producing substances with high energy content. In this sense, the oxidation of water can provide the H+ ions and electrons needed for the energy conversion and storage processes. Since 2005, it has been known that single-site coordination compounds can act as water oxidation catalysts (WOC). Improvement of the catalytic activity, however, has occurred mainly by the choice of the redox-active metal matching with a series of compatible ligands, more specifically, paying attention to the electronic characteristics of the organic framework of the first coordination sphere. Recently, the use of dangling bases dramatically increased the catalytic activity of new species as WOC, taking advantage of what is called a second coordination sphere. With this assistance, some compounds were shown to reach turnover frequencies (TOF) of 104 s-1, while compounds with the first coordination sphere commonly exhibit TOF ca. 10-1 s-1. In this manuscript, we discuss the concept, together with a number of examples, of the use of controlled interactions between the first and second coordination spheres that have been wielded to improve the performance of ruthenium-centered complexes as WOC in water oxidation reactions.
ABSTRACT
Through direct transmetalation reaction of Z-vinylic tellurides with nBuLi was observed the unexpected isomerization of double bonds leading to potassium E-vinyltrifluoroborates salts in low to moderate yields. Using EPR spin trapping experiments the radical species that promoted the stereoinversion of Z-vinylic organometallic species during the preparation of potassium vinyltrifluoroborate salts was identified. The experiments support the proposed mechanism, which is based on the homolytic cleavage of the TenBu bond.