Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Food Res Int ; 170: 112877, 2023 08.
Article in English | MEDLINE | ID: mdl-37316038

ABSTRACT

Many existing in vitro digestion systems do not accurately represent the peristaltic contractions of the gastrointestinal system; most of the systems that have physiologically-relevant peristaltic contractions have low throughput and can only test one sample at a time. A device has been developed that provides simulated peristaltic contractions for up to 12 digestion modules simultaneously using rollers of varying width to modulate the dynamics of the peristaltic motion. The force applied to a simulated food bolus varied from 2.61 ± 0.03 N to 4.51 ± 0.16 N (p < 0.05) depending on roller width. Video analysis showed that the degree of occlusion of the digestion module varied from 72.1 ± 0.4% to 84.6 ± 1.2% (p < 0.05). A multiphysics, computational fluid dynamics model was created to understand the fluid flow. The fluid flow was also examined experimentally using video analysis of tracer particles. The model-predicted maximum fluid velocity in the peristaltic simulator incorporating the thin rollers was 0.016 m/s, and the corresponding value measured using tracer particles was 0.015 m/s. The occlusion, pressure, and fluid velocity in the new peristaltic simulator fell within physiologically representative ranges. Although no in vitro device perfectly recreates the conditions of the gastrointestinal system, this novel device is a flexible platform for future gastrointestinal research and could allow for high-throughput screening of food materials for health-promoting properties under conditions representative of human gastrointestinal motility.


Subject(s)
Gastrointestinal Tract , Peristalsis , Humans , Gastrointestinal Motility , Food , High-Throughput Screening Assays
2.
J Agric Food Chem ; 69(43): 12598-12607, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34665628

ABSTRACT

Antibiotics are released into the environment as their global consumption increases. Uptake, accumulation, and metabolism of antibiotics by food crops is an emerging health concern as the associated risks of consuming food crops containing antibiotics are still largely unknown. This study investigated the fate of sulfamethazine, sulfamethoxazole, and their phytometabolites during in vitro digestion of the model plantArabidopsis thaliana. The amounts of parent antibiotics released during in vitro digestion were 4-5 times higher than those quantified in plant tissues prior to digestion, which was attributed to back transformation of the phytometabolites into the parent aglycones. These findings demonstrated that overlooking the proportions of phytometabolites in recent health risk assessment studies would considerably underestimate the realistic human exposure through consumption of contaminated food crops. New risk assessment frameworks are necessary to include these critical factors for comprehensively addressing human exposure to emerging contaminants through food chains.


Subject(s)
Anti-Bacterial Agents , Wastewater , Crops, Agricultural , Digestion , Humans , Sulfamethoxazole , Wastewater/analysis
3.
J Food Sci ; 84(11): 3204-3212, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31589341

ABSTRACT

Rheological properties of food materials are important as they influence food texture, processing properties, and stability. Rotational rheometry has been widely used for measuring rheological properties. However, the measurements obtained using different geometries and rheometers are generally not compared for precision and accuracy, so it is difficult to compare data across different studies. In this study, nine rheometers from seven laboratories were used to measure the viscosity and viscoelastic properties of a commercial salad dressing. The measurements were obtained at three temperatures (8, 25, and 60 °C) using different diameter parallel plates (20, 40, 50, and 60 mm). Generally, the viscosity measurements among rheometers differed significantly ( P < 0.05 ). For larger geometry diameter (40, 50, and 60 mm) and at lower temperatures (8 °C), viscosity measurements at lower shear rate (0.01, 0.1, and 1.0 s-1 ) were significantly different. Rheometer brand significantly affected storage modulus only at low (0.01%) and high levels (10% and 100%) of strain. Temperature was an influencing factor on viscoelastic behaviors only at high strain (>10%). Storage moduli values obtained by frequency sweeps were not affected by rheometer or plate diameter. Overall, rheometer, geometry, and temperature can influence rheological measurements and care should be taken when comparing data across laboratories or published works. Higher shear rates (≥10 s-1 ) and moderate strains (0.1% to 10%) generally provide more repeatable data among different laboratories. PRACTICAL APPLICATION: This study provides information on what factors may potentially influence rheological measurements conducted across different laboratories. It is useful for rheometer users who want to compare their experimental data to published data or compare two sets of published data. It is better to compare data collected at shear rates 10 s-1 and strains between 0.1% and 1.0%.


Subject(s)
Condiments/analysis , Solanum lycopersicum/chemistry , Elasticity , Rheology , Temperature , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL