Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
AMB Express ; 14(1): 56, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730188

ABSTRACT

In the present study, low- and high-molecular-weight hyaluronic acids (LMW-HA and HMW-HA) were synthesized in vitro by truncated Streptococcus equisimilis hyaluronan synthases (SeHAS). The enzyme kinetic parameters were determined for each enzyme variant. The MW, structure, dispersity, and biological activity of polymers were determined by electrophoresis, FTIR spectroscopy, carbazole, cell proliferation, and cell migration assay, respectively. The specific activities were calculated as 7.5, 6.8, 4.9, and 2.8 µgHA µgenzyme-1 min-1 for SeHAS, HAS123, HAS23, and HASIntra, respectively. The results revealed SeHAS produced a polydisperse HMW-HA (268 kDa), while HAS123 and HAS23 produced a polydisperse LMW-HA (< 30 kDa). Interestingly, HASIntra produced a low-disperse LMW-HA. Kinetics studies revealed the truncated variants displayed increased Km values for two substrates when compared to the wild-type enzyme. Biological assessments indicated all LMW-HAs showed a dose-dependent proliferation activity on endothelial cells (ECs), whereas HMW-HAs exhibited an inhibitory effect. Also, LMW-HAs had the highest cell migration effect at 10 µg/mL, while at 200 µg/mL, both LMW- and HMW-HAs postponed the healing recovery rate. The study elucidated that the transmembrane domains (TMDs) of SeHAS affect the enzyme kinetics, HA-titer, HA-size, and HA-dispersity. These findings open new insight into the rational engineering of SeHAS to produce size-defined HA.

2.
World J Microbiol Biotechnol ; 39(9): 227, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37326689

ABSTRACT

The membrane enzyme of hyaluronan synthase (HAS) is the key enzyme in hyaluronic acid (HA) biosynthesis by coupling UDP-sugars. Prior studies proposed the C-terminus region of HAS enzyme mediates the production rate and molecular weight of HA. The current study describes the isolation and characterizations of a transmembrane HAS enzyme isolated from Streptococcus equisimilis Group G (GGS-HAS) in vitro. The effect of transmembrane domains (TMDs) on HA productivity was determined and the shortest active variant was also identified by recombinant expression of full-length and five truncated forms of GGS-HAS in Escherichia coli. We found that the GGS-HAS enzyme is longer than that of S. equisimilis group C (GCS-HAS) which includes three more residues (LER) at the C-terminus region (positions 418-420) and also one-point mutation at position 120 (E120D). Amino acid sequence alignment demonstrated 98% and 71% identity of GGS-HAS with that of S. equisimilis Group C and S. pyogenes Group A, respectively. The in vitro productivity of the full-length enzyme was 35.57 µg/nmol, however, extended TMD deletions led to a reduction in the HA productivity. The HAS-123 variant showed the highest activity among the truncated forms, indicating the essential role of first, second, and third TMDs for the full activity. Despite a decline in activity, the intracellular variant can still mediate the binding and polymerization of HA without any need for TMDs. This significant finding suggests that the intracellular domain is the core for HA biosynthesis in the enzyme and other domains are probably involved in other attributes including the enzyme kinetics that affect the size distribution of the polymer. However, more investigations on the recombinant forms are still needed to confirm clearly the role of each transmembrane domain on these properties.


Subject(s)
Glucuronosyltransferase , Hyaluronic Acid , Hyaluronan Synthases/genetics , Hyaluronan Synthases/chemistry , Hyaluronic Acid/chemistry , Hyaluronic Acid/metabolism , Glucuronosyltransferase/genetics , Glucuronosyltransferase/chemistry , Glucuronosyltransferase/metabolism , Polymerization
3.
AMB Express ; 13(1): 63, 2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37354246

ABSTRACT

Hyaluronic acid (HA), composed of glucuronic acid (GlcUA) and N-acetyl glucoseamine (GlcNAc), is a versatile biopolymer with high commercial value and innumerous physiological roles and pharmaceutical applications. The hasA gene has main role in HA biosynthesis by Streptococcus strain as a natural producer. The hasB and hasC genes are also mediate GlcUA precursor biosynthesis. In the present study, S. equisimilis hasA gene; B. subtilis tuaD and gtaB genes for GlcUA precursors enhancement, and vgb gene coding bacterial hemoglobin as an oxygen provider were used to construct the B. subtilis strain for HA production. RBSHA (hasA), RBSHA2 (hasA/tuaD/gtaB), and RBSHA3 (hasA/tuaD/gtaB/vgb) strains were developed and confirmed through genotype and phenotype analysis. After HA production and purification, FTIR spectroscopy confirmed the produced HA structures. HA assay showed the highest HA titer for RBSHA3 (2.1 ± 0.18 mg/ml) and then RBSHA2 (1.9 ± 0.03 mg/ml), and RBSHA (0.6 ± 0.14 mg/ml). Statistical analysis indicated there is no significant difference in HA titer between RBSHA2 and RBSHA3 strains (p-value > 0.05), however, these strains produced HA approximately 4-fold higher than that of RBSHA strain. Agarose gel electrophoresis showed the same molecular weight (< 30 kDa) of produced HA by strains. Dynamic light scattering (DLS) revealed all HA polymers had a relatively low polydispersity index (PDI < 0.5). These findings demonstrate the successful GlcUA biosynthetic pathway engineering strategy in improving HA yield by recombinant B. subtilis, metabolically-robust, and industrially potential strain.

4.
Iran Biomed J ; 26(6): 454-62, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36437793

ABSTRACT

Background: Background: Hyaluronic acid (HA), a natural polymer with wide applications in biomedicine and cosmetics, is mainly produced by Streptococcal fermentation at industrial scale. In the present study, chemical random mutagenesis was used for development of Streptococcus equisimilis group G mutant strains with high HA productivity. Methods: Methods: The optimum of the pH of culture condition and cultivation time for HA production by wild strain group G were assessed. At first, two rounds of mutation at different concentrations of NTG was used for mutagenesis. Then, the nonhemolytic and hyaluronidase-negative mutants were screened on the blood and HA agar. HA productivity and molecular weight were determined by carbazole assay, agarose gel electrophoresis and specific staining. Moreover, stability of the high producer mutants was evaluated within 10 generations. Results: Results: The results showed that the wild-type strain produced 1241 ± 2.1 µg/ml of HA at pH 5.5 and 4 hours of cultivation, while the screened mutants showed a 16.1-45.5% increase in HA production. Two mutant strains, named Gm2-120-21-3 (2470 ± 8.1 µg/ml) and Gm2-120-21-4 (2856 ± 4.2 µg/ml), indicated the highest titer and a consistent production. The molecular weight (Mw) of HA for the mutants was less than 160 kDa, considering as a low Mw HA. Conclusion: Conclusion: The mutant strains producing a low polydisperse, as well as low Mw of HA with high titer might be regarded as potential industrial strains for HA production after further safety investigations.


Subject(s)
Hyaluronic Acid , Streptococcus , Hyaluronic Acid/chemistry , Molecular Weight , Agar
5.
AMB Express ; 12(1): 124, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36138332

ABSTRACT

Design of experiment (DOE) is a statistical approach for designing, performing, and interpreting a large set of data with the minimum number of tests. In our previous study, we developed a novel Hsp27 SILEX system for production of recombinant proteins. In the present study, we optimized indirectly the most effective factors including inoculation load, self-induction temperature, and culture media on autoinduction of staphylokinase (SAK) expression using RSM methodology and fluorometry. The expression level of SAK was assayed at different runs after 6 h incubation at 90 rpm. The results indicated all parameters significantly affect the SAK expression level (p < 0.05). The optimum expression condition was obtained with an inoculation load of 0.05, a temperature of 25 °C, and TB culture medium. The analysis of variance with a R2 value of 0.91 showed that a quadratic model well described this prediction (p < 0.05). Applying the optimized condition led to an approximately fourfold increase in the SAK expression level (from 1.3 to 5.2 µg/ml). Moreover, the recombinant protein was purified using immobilized metal affinity chromatography and the activity was also confirmed by semi-quantitative caseinolytic method.

6.
AMB Express ; 12(1): 88, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35821141

ABSTRACT

Hyaluronic Acid (HA) is a natural biopolymer that has important physiological and industrial applications due to its viscoelastic and hydrophilic characteristics. The responsible enzyme for HA production is Hyaluronan synthase (HAS). Although in vitro structure-function of intact HAS enzyme has been partly identified, there is no data on in vivo function of truncated HAS forms. In the current study, novel recombinant Bacillus subtilis strains harboring full length (RBSFA) and truncated forms of SeHAS (RBSTr4 and RBSTr3) were developed and HA production was studied in terms of titer, production rate and molecular weight (Mw). The maximum HA titer for RBSFA, RBSTr4 and RBSTr3 was 602 ± 16.6, 503 ± 19.4 and 728 ± 22.9 mg/L, respectively. Also, the HA production rate was 20.02, 15.90 and 24.42 mg/L.h-1, respectively. The findings revealed that RBSTr3 produced 121% and 137% more HA rather than RBSFA and RBSTr4, respectively. More interestingly, the HA Mw was about 60 kDa for all strains which is much smaller than those obtained in prior studies.

7.
Arch Microbiol ; 204(6): 343, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35596084

ABSTRACT

Cold atmospheric plasma (CAP) is being used recently as a modern technique for microbial random mutagenesis. In the present study, CAP was used to induce mutagenesis in L. enzymogenes which is the bacteria known for producing proteolytic enzymes especially lysyl endopeptidase (Lys C). Enhanced proteolytic activity was the main criteria to select mutant strains. Therefore, the cell suspension of L. enzymogenes strain (ATCC 29487), was exposed to CAP for 30, 45, 90, and 150 s. The proteolytic activity of mutant strains was screened initially by radial caseinolytic assay and then by Ansons method in different phases of bacterial growth in the selected mutants. The purification process of Lysyl endopeptidase as the target enzyme was optimized and for enlightening molecular aspect of CAP mutagenesis, the sequences of the upstream and coding regions of lys C gene from 10 selected mutant strains were determined. The bacterial survival assessment showed that the more CAP treatment time, the less survival rate, however, in all exposure times, a number of survived mutants showed enhanced proteolytic activity. Among 38 out of 100 examined mutants which showed higher proteolytic activity than that of wild type, the M1-30 s mutant exhibited the highest increment to 1.94 fold. The SDS-PAGE analysis showed expected size of purified Lys C from M1-30 s. The Lys C gene from M14-150 s mutant strain (1.4-fold increment) harbored three point mutations which can be effective in enhancing protease activity. In conclusion, the results highlighted the role of CAP for strain improvement process to obtain industrial strains.


Subject(s)
Lysobacter , Plasma Gases , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lysobacter/genetics , Lysobacter/metabolism , Plasma Gases/metabolism , Plasma Gases/pharmacology
8.
Microb Cell Fact ; 20(1): 223, 2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34895227

ABSTRACT

BACKGROUND: Identification of high-expressing colonies is one of the main concerns in the upstream process of recombinant protein development. The common method to screen high-producing colonies is SDS-PAGE, a laborious and time-consuming process, which is based on a random and qualitative way. The current study describes the design and development of a rapid screening system composed of a dicistronic expression system containing a reporter (enhanced green fluorescent protein, eGFP), protein model (staphylokinase, SAK), and a self-inducible system containing heat shock protein 27 (Hsp27). RESULTS: Dicistronic-autoinducible system expressed eGFP and SAK successfully in 5-ml and 1-L culture volumes. High expressing colonies were identified during 6 h via fluorescent signals. In addition, the biological activity of the protein model was confirmed semi-quantitatively and quantitatively through radial caseinolytic and chromogenic methods, respectively. There was a direct correlation between eGFP fluorescent intensity and SAK activity. The correlation and linearity of expression between the two genes were respectively confirmed with Pearson correlation and linear regression. Additionally, the precision, limit of detection (LOD), and limit of quantification (LOQ) were determined. The expression of eGFP and SAK was stable during four freeze-thaw cycles. In addition, the developed protocol showed that the transformants can be inoculated directly to the culture, saving time and reducing the error-prone step of colony picking. CONCLUSION: The developed system is applicable for rapid screening of high-expressing colonies in most research laboratories. This system can be investigated for other recombinant proteins expressed in E. coli with a potential capability for automation and use at larger scales.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , High-Throughput Screening Assays/methods , Recombinant Proteins/metabolism , Bacterial Proteins/genetics , Fluorescence , Gene Expression Regulation, Bacterial , Green Fluorescent Proteins/genetics , Metalloendopeptidases/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Proteins/genetics
9.
Sci Rep ; 11(1): 4576, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33633341

ABSTRACT

IPTG-inducible promoter is popularly used for the expression of recombinant proteins. However, it is not suitable at the industrial scale due to the high cost and toxicity on the producing cells. Recently, a Self-Inducible Expression (SILEX) system has developed to bypass such problems using Hsp70 as an autoinducer. Herein, the effect of other heat shock proteins on the autoinduction of green fluorescent protein (EGFP), romiplostim, and interleukin-2 was investigated. For quantitative measurements, EGFP expression was monitored after double-transformation of pET28a-EGFP and pET21a-(Hsp27/Hsp40/Hsp70) plasmids into E. coli using fluorimetry. Moreover, the expression level, bacterial growth curve, and plasmid and expression stability were compared to an IPTG- inducible system using EGFP. Statistical analysis revealed a significant difference in EGFP expression between autoinducible and IPTG-inducible systems. The expression level was higher in Hsp27 system than Hsp70/Hsp40 systems. However, the highest amount of expression was observed for the inducible system. IPTG-inducible and Hsp70 systems showed more lag-time in the bacterial growth curve than Hsp27/Hsp40 systems. A relatively stable EGFP expression was observed in SILEX systems after several freeze-thaw cycles within 90 days, while, IPTG-inducible system showed a decreasing trend compared to the newly transformed bacteria. Moreover, the inducible system showed more variation in the EGFP expression among different clones than clones obtained by SILEX systems. All designed SILEX systems successfully self-induced the expression of protein models. In conclusion, Hsp27 system could be considered as a suitable autoinducible system for protein expression due to less metabolic burden, lower variation in the expression level, suitable plasmid and expression stability, and a higher expression level.


Subject(s)
Escherichia coli/genetics , Gene Expression , Genetic Vectors/genetics , Heat-Shock Proteins/metabolism , Recombinant Proteins/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Genes, Reporter , Genetic Engineering , Humans , Recombinant Proteins/metabolism
10.
Iran Biomed J ; 24(3): 192-200, 2020 05.
Article in English | MEDLINE | ID: mdl-31952436

ABSTRACT

Background: Protein purification is the most complicated issue in the downstream processes of recombinant protein production; therefore, improved selective purification methods are important. Affinity-based protein purification method using polyhistidine-tag (His-tag) and nickel-nitrilotriacetic acid (Ni-NTA) resins is one of the most common strategies. Magnetic nanoparticles (MNPs) can be used as a beneficial alternative for Ni-NTA resins. However, there is no data on the capability of MNPs for protein purification from inclusion bodies; this issue is studied here. Methods: Recombinant His-tagged proteins of enhanced green fluorescent protein (EGFP)-His and streptokinase (SK)-His were expressed in E. coli BL-21 (DE3) in soluble and inclusion body forms, respectively. MNPs including Fe3O4 magnetic core, SiO2 shell, and Ni2+ on the surface were synthesized by sol-gel and hydrothermal reactions and then characterized by X-ray powder diffraction, vibrating sample magnetometer, and scanning electron microscopy imaging. Both synthesized Fe3O4@NiSiO3 and Fe3O4@NixSiOy MNPs were employed to purify EGEP-His and SK-His under native and denaturing conditions, respectively. The quantity and purity of purified proteins were analyzed by micro-Bradford assay and SDS-PAGE, respectively. Results: Both synthesized MNPs were spherical and well-dispersed with the size ranging from 290 to 415 nm. Synthesized MNPs contained Fe3O4, SiO2 shell, and Ni2+ on their structures with suitable magnetization properties. Using Fe3O4@NiSiO3 and Fe3O4@NixSiOy yielded 192 and 188 µg/mg of SK-His, as compared to 207 and 195 µg/mg of EGFP-His, respectively. Conclusion: MNPs containing magnetic Fe3O4 core, SiO2 shell, and Ni2+on their surface are versatile alternatives for Ni-NTA resins in protein purification for proteins expressed in both soluble and inclusion body forms.


Subject(s)
Chromatography, Affinity/methods , Inclusion Bodies/chemistry , Magnetite Nanoparticles/chemistry , Recombinant Proteins/isolation & purification , Green Fluorescent Proteins/isolation & purification , Magnetite Nanoparticles/ultrastructure , Silicon Dioxide/chemistry , X-Ray Diffraction
11.
Iran J Microbiol ; 12(6): 601-606, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33613915

ABSTRACT

BACKGROUND AND OBJECTIVES: Increasing the amount of protease from microbial sources is in the focus of attention. Random mutagenesis by physical methods like ultraviolet (UV) radiation is a cost effective and convenient procedure for strain improvement. Therefore, in the present study attempts were made to investigate the effect of UV radiation on Lysobacter enzymogenes in order to increase its protease activity. MATERIALS AND METHODS: UV mutagenesis was induced in L. enzymogenes fresh culture at the distance of 20 cm from light source for different exposure times of 70, 90, 150 and 200 seconds. The mutated isolates were randomly cultured from the nutrient agar medium to casein agar plate, as a selective medium. The primary screening was performed by observing hydrolysis of casein in the plate and the secondary screening was carried out on skim milk agar on the basis of zone of hydrolysis using bacterial supernatants. Quantification of protease activity was done by Anson's method using tyrosine as standard. RESULTS: UV radiation resulted in obtaining 12 mutants out of 100 examined L. enzymogenes strains with increased protease activity. The mutant M2, at 90s exposure time was selected as the best mutant bacterium which produced 1.96 fold more protease over the parent strain. CONCLUSION: Random mutation by UV radiation is a simple and convenient method to increase the protease activity of Lysobacter enzymogenes. Furthermore, it seems that the middle time of exposure to UV, 90 s, was the best time because it can induce mutagenesis but did not hamper the bacteria growth and viability.

12.
Iran Biomed J ; 24(1): 15-23, 2020 01.
Article in English | MEDLINE | ID: mdl-31454859

ABSTRACT

Background: Streptokinase (SK), a heterogeneous plasminogen activator (PA) protein from groups A, C, and G streptococci (GAS, GCS, GGS, respectively) contains three structural domains (SKα, SKß, and SK). Based on the variable region of SKß, GAS-SK (ska) are clustered as SK1 and SK2 (including cluster2-streptokinase (SK2a)/SK2b), which show low and high fibrinogen (FG)-dependent plasminogen (Plg) activation properties, respectively. Despite being co-clustered as SK2a, GCS/GGS-SK (skcg) variants display properties similar to SK1. Herein, by SKß exchange between GGS (G88) and GAS-SK2a (STAB902) variants, the potential roles of SK domains in amidolytic/proteolytic activity and FG-bound-Plg activation are represented. Methods: Two parental SKG88 and SKSTAB902 genes were cloned into the NdeI/XhoI site of pET26b expression vector. The two chimeric SKß-exchanged constructs (SKC1: αG88-ßSTAB-γG88 and SKC2; αSTAB-ßG88-γSTAB) were constructed by BstEII/BsiWI digestion/cross-ligation in parental plasmids. SK were expressed in E. coli and purified by nickel-nitriloacetic acid chromatography. PA potencies of SKs were measured by colorimetric assay. Results: SDS-PAGE and Western-blot analyses confirmed the proper expression of 47-kDa SK. Analyses indicated that the catalytic efficiency (Kcat/Km) for amidolytic and proteolytic activity were less and moderately dependent on SKß, respectively. The increase of FG-bound-Plg activation for SKSTAB902/SKC1 containing SK2aß was around six times, whereas for SKG88/SKC2 containing skcgß, it was four times. Conclusion: Although SKß has noticeable contribution in FG-bound-Plg activation activity, it had minor contribution in fibrin-independent, amidolytic activity. These data might be of interest for engineering fibrin-specific versions of SK.


Subject(s)
Amides/metabolism , Fibrin/metabolism , Plasminogen/metabolism , Proteolysis , Streptococcus/enzymology , Streptokinase/chemistry , Kinetics , Protein Domains , Streptokinase/genetics , Streptokinase/isolation & purification
13.
J Med Microbiol ; 69(1): 111-119, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31778110

ABSTRACT

Introduction. Differences between the genomic and virulence profile of Bordetella pertussis circulating strains and vaccine strains are considered as one of the important reasons for the resurgence of whooping cough (pertussis) in the world. Genetically inactivated B. pertussis is one of the new strategies to generate live-attenuated vaccines against whooping cough.Aim. The aim of this study was to construct a B. pertussis strain based on a predominant profile of circulating Iranian isolates that produces inactivated pertussis toxin (PTX).Methodology. The B. pertussis strain BPIP91 with predominant genomic and virulence pattern was selected from the biobank of the Pasteur Institute of Iran. A BPIP91 derivative with R9K and E129G alterations in the S1 subunit of PTX (S1mBPIP91) was constructed by the site-directed mutagenesis and homologous recombination. Genetic stability and antigen expression of S1mBPIP91 were tested by serially in vitro passages and immunoblot analyses, respectively. The reduction in toxicity of S1mBPIP91 was determined by Chinese hamster ovary (CHO) cell clustering.Results. All constructs and S1mBPIP91 were confirmed via restriction enzyme analysis and DNA sequencing. The engineered mutations in S1mBPIP91 were stable after 20 serial in vitro passages. The production of virulence factors was also confirmed in S1mBPIP91. The CHO cell-clustering test demonstrated the reduction in PTX toxicity in S1mBPIP91.Conclusion. A B. pertussis of the predominant genomic and virulence lineage in Iran was successfully engineered to produce inactive PTX. This attenuated strain will be useful to further studies to develop both whole cell and acellular pertussis vaccines.


Subject(s)
Antigens, Bacterial/genetics , Bordetella pertussis/genetics , Bordetella pertussis/immunology , Mutant Proteins/genetics , Pertussis Toxin/genetics , Pertussis Vaccine/genetics , Animals , Antigens, Bacterial/metabolism , Antigens, Bacterial/toxicity , CHO Cells , Cell Survival/drug effects , Cricetulus , Iran , Mutagenesis, Site-Directed , Mutant Proteins/metabolism , Mutant Proteins/toxicity , Pertussis Toxin/metabolism , Pertussis Toxin/toxicity , Pertussis Vaccine/adverse effects , Protein Engineering , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/genetics
14.
Microb Pathog ; 139: 103862, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31707080

ABSTRACT

Streptokinase (SK), a heterogeneous plasminogen (Pg) activator protein secreted by groups A, C and G streptococci (GAS/GCS/GGS) is a virulence factor composed of three structural domains; SKα/SKß/SKγ. Phylogenetic analysis of the major variable region of SKß (sk-V1; nucleotides 448-791; 343bp) which classifies the SK alleles into SK1/SK2 clusters and SK2a/SK2b sub-clusters, is an approved assay to categorize clinical/natural streptococcal-isolates into co-related functional/pathogenesis groups. Herein, we describe a novel PCR-RFLP assay that in combination with Numerical Taxonomy and multivariate analysis System (NTSYS) resulted to dendrograms with complete adaption to that of the phylogenetic analysis of sk-V1-based clustering. In silico analyses by 30 restriction enzymes on GenBank-acquired sk-V1 sequences of known streptococcal clusters, resulted to the selection of "BsrI, MseI and Tsp45I″ enzymes that produced proper patterns to construct the expected dendrograms. In vitro analysis of the selected enzymes on clinical isolates of GAS/GCS/GGS validated the production of the same in silico-observed digestion patterns. Comparison of the constructed dendrogram and phylogenetic trees of selected GenBank and clinical isolates of streptococci indicated complete adaptation. Assessment of Pg-activation activity in selected clinical isolates indicated the expected co-related functionalities of the classified SK-clusters by the invented PCR-RFLP/NTSYS method. The simplicity of the assay relieves the need of sequencing/phylogenetic analyses for SK-clustering.


Subject(s)
Alleles , Phylogeny , Polymerase Chain Reaction/methods , Polymorphism, Restriction Fragment Length , Streptococcus/enzymology , Streptococcus/genetics , Streptokinase/classification , Streptokinase/genetics , Bacterial Proteins/genetics , Cluster Analysis , Computer Simulation , Humans , Multigene Family , Streptococcus/isolation & purification , Virulence Factors/genetics
15.
Iran J Microbiol ; 11(3): 212-219, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31523404

ABSTRACT

BACKGROUND AND OBJECTIVES: Cholera disease remains an important global health problem affecting 3-5 million subjects worldwide. Outer membrane vesicles (OMVs) have been found in a variety of Gram-negative bacteria and act as protective transport vesicles. The aim of this study was to evaluate Immune responses against Vibrio cholerae O1 El Tor clinical strain OMV and compare it with killed whole cell (KWC), complex of (KWC-OMV) as well as the internationally licensed oral cholera vaccine, Dukoral, in serum and intestinal secretions of mice. MATERIALS AND METHODS: OMVs were prepared by using modified detergent-centrifugation procedure from V. cholerae O1 El Tor clinical strain from 2005 outbreak. The ultrastructure and content of OMVs were investigated via the Scanning Electron Microscopy (SEM) and SDS-PAGE analysis. Three doses of oral immunization were adjusted and total IgG and IgA in serum and intestinal secretion were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: Extracted OMVs from the V. cholerae were spherical vesicles with a size ranging from 10 to 300 nm. OMV-immunized mice showed an increased level of total IgG and IgA both in serum and intestinal secretion when compared to the negative controls. Also, there existed a higher level of secretory IgA than the total IgG, suggesting the most of protection against V. cholerae colonization provided by sIgA. CONCLUSION: Our findings revealed that oral immunization with V. cholerae OMVs might induce a long-term immunity, especially when administered in combination with KWC. This study tested the adjuvant activity of OMVs and may be useful in future nano vaccine research.

16.
FEBS Open Bio ; 9(7): 1259-1269, 2019 07.
Article in English | MEDLINE | ID: mdl-31087538

ABSTRACT

Streptokinase (SK) is a plasminogen activator which converts inactive plasminogen (Pg) to active plasmin (Pm), which cleaves fibrin clots. SK secreted by groups A, C, and G Streptococcus (SKA/SKC/SKG) is composed of three domains: SKα, SKß and SKγ. Previous domain-swapping studies between SK1/SK2b-cluster variants revealed that SKß plays a major role in the activation of human Pg. Here, we carried out domain-swapping between skcg-SK/SK2-cluster variants to determine the involvement of SKß in several SK functionalities, including specific/proteolytic activity kinetics, fibrinogen-bound Pg activation and α2 -antiplasmin resistance. Our results indicate that SKß has a minor to determining role in these diverse functionalities for skcg-SK and SK2b variants, which might potentially be accompanied by few critical residues acting as hot spots. Our findings enhance our understanding of the roles of SKß and hot spots in different functional characteristics of SK clusters and may aid in the engineering of fibrin-specific variants of SK for breaking down blood clots with potentially higher efficacy and safety.


Subject(s)
Protein Domains/physiology , Streptokinase/metabolism , Bacterial Proteins/chemistry , Fibrinogen , Fibrinolysin/chemistry , Fibrinolysin/metabolism , Kinetics , Plasminogen/chemistry , Plasminogen/metabolism , Plasminogen Activators/chemistry , Plasminogen Activators/metabolism , Protein Binding , Protein Engineering/methods , Proteolysis , Streptococcus/metabolism , Streptokinase/chemistry , Streptokinase/physiology
17.
Curr Pharm Biotechnol ; 20(1): 76-83, 2019.
Article in English | MEDLINE | ID: mdl-30734674

ABSTRACT

BACKGROUND: Despite the extensive use of streptokinase in thrombolytic therapy, its administration may have some shortcomings like allergic reactions and relatively low half life. Specific PEGylation on cysteine at desired sites of streptokinase may alleviate these deficiencies and improve the quality of treatment. OBJECTIVE: This study was carried out to create a new cystein variant of streptokinase and compare its activity with formerly mutated SK263cys, SK45cys and intact streptokinase (Ski) to introduce superior candidates for specific PEGylation. METHOD: In silico study was carried out to select appropriate amino acid for cysteine substitution and accordingly mutagenesis was carried out by SOEing PCR. The mutated gene was cloned in E. coli, expressed, and purified by affinity chromatography. Activity of the purified proteins was assayed and kinetic parameters of enzymatic reaction were analyzed. RESULTS: According to in silico data, Arginine319 was selected for substitution with cysteine. SK319cys was achieved with 98% purity after cloning, expression and purification. It was shown that the enzymatic efficiency of SK319Cys and SK263cys was increased 18 and 21%, respectively, when compared to SKi (79.4 and 81.3 vs. 67.1µM-1min-1), while SK45cys showed 7% activity decrease (62.47µM-1min-1) compared to SKi. According to time-based activity assay, SK319Cys and SK263cys exhibited higher activity at lower substrate concentrations (100 and 200 µM), but at higher concentrations of substrate (400 and 800 µM), the proteins showed a very close trend of activity. CONCLUSION: SK319cys, as the new cysteine variant of streptokinase, together with SK263cys and SK45cys can be considered as appropriate molecules for specific PEGylation.


Subject(s)
Cysteine/genetics , Genetic Variation/genetics , Streptokinase/genetics , Streptokinase/metabolism , Cysteine/chemistry , Escherichia coli/genetics , Humans , Polymerase Chain Reaction/methods , Protein Structure, Tertiary
18.
J Biomol Struct Dyn ; 37(8): 1944-1955, 2019 May.
Article in English | MEDLINE | ID: mdl-29726798

ABSTRACT

Streptokinase (SK), a plasminogen activator (PA) that converts inactive plasminogen (Pg) to plasmin (Pm), is a protein secreted by groups A, C, and G streptococci (GAS, GCS, and GGS, respectively), with high sequence divergence and functional heterogeneity. While roles of some residual changes in altered SK functionality are shown, the underlying structural mechanisms are less known. Herein, using computational approaches, we analyzed the conformational basis for the increased activity of SK from a GGS (SKG132) isolate with four natural residual substitutions (Ile33Phe, Arg45Gln, Asn228Lys, Phe287Ile) compared to the standard GCS (SKC). Using the crystal structure of SK.Pm catalytic complex as main template SKC.µPm catalytic complex was modeled through homology modeling process and validated by several online validation servers. Subsequently, SKG132.µPm structure was constructed by altering the corresponding residual substitutions. Results of three independent MD simulations showed increased RMSF values for SKG132.µPm, indicating the enhanced structural flexibility compared to SKC.µPm, specially in 170 and 250 loops and three regions: R1 (149-161), R2 (182-215) and R3 (224-229). In parallel, the average number of Hydrogen bonds in 170 loop, R2 and R3 (especially for Asn228Lys) of SKG132 compared to that of the SKC was decreased. Accordingly, residue interaction networks (RINs) analyses indicated that Asn228Lys might induce more level of structural flexibility by generation of free Lys256, while Phe287Ile and Ile33Phe enhanced the stabilization of the SKG132.µPm catalytic complex. These results denoted the potential role of the optimal dynamic state and stabilized catalytic complex for increased PA potencies of SK as a thrombolytic drug.


Subject(s)
Biocatalysis , Computer Simulation , Fibrinolysin/metabolism , Mutation/genetics , Streptococcus/enzymology , Streptokinase/genetics , Amino Acids/metabolism , Hydrogen Bonding , Models, Molecular , Protein Stability , Reproducibility of Results
19.
Biotechnol Lett ; 39(6): 889-895, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28247197

ABSTRACT

OBJECTIVE: To gain insights on the degree of heterogeneity and kinetic differences of streptokinase (SK) from group G (SKG) Streptococci compared with standard SK from group C (SKC) and identification of potentially contributing critical residues (hotspots). RESULTS: DNA and sequencing analyses confirmed the proper construction of all SK encoding vectors (two SKGs and one standard SKC). SDS-PAGE and western blot analyses confirmed the expression and proper purification of the recombinant SKs from E.coli with the expected size of 47 kDa. Kinetic analyses of two SKGs, compared with SKC, showed higher levels of specific [(×103 IU/mg) of 725 and 715 vs. 536] and fibrin-dependent proteolytic activities [Kcat/KM (min-1/µM) of 37 and 30 vs. 23], accompanied by declined fibrin-independent amidolytic activities [Kcat/KM (min-1/mM) of 109 and 84 vs. 113], respectively. Sequence alignments identified 10 novel residual substitutions scattered in SKα (I33F, R45Q, SKG132, A47D, and G55 N), SKß (N228 K, F287I), and SKγ domains (L335 V, V396A, T403S) of SKGs, as potential hotspots. CONCLUSION: The residue substitutions identified might critically contribute as hot spots to different kinetic parameters of SKGs and might assist in further elucidation of structure/function relations and rational design of SKs with improved (fibrin-dependent) therapeutic properties.


Subject(s)
Amino Acids/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Streptococcus/enzymology , Streptokinase/chemistry , Streptokinase/metabolism , Amino Acids/metabolism , Bacterial Proteins/genetics , Cloning, Molecular , Escherichia coli , Fibrin/metabolism , Kinetics , Plasminogen/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Analysis, Protein , Streptococcus/genetics , Streptokinase/genetics
20.
Iran J Basic Med Sci ; 16(4): 620-7, 2013 Apr.
Article in English | MEDLINE | ID: mdl-24250939

ABSTRACT

INTRODUCTION: Streptokinase (SK) is a fibrinolytic protein secreted by ß-hemolytic streptococci (ßHS) groups A, C and G. Due to its importance as a thrombolytic drug, national screening programs in different countries for isolation of ßHS and especially SK-producing group C (GCS) strains have been conducted. Herein, we provide data of the first screening study on ßHS isolates in Iran for the aim of recombinant SK (rSK) production from a local strain. MATERIALS AND METHODS: 252 streptococcal samples were collected and characterized using microbial/biochemical assays. The GCS strains were serologically confirmed. Activity of GCS supernatant cultures was determined by caseinolytic assay in comparison with the standard strain GCS9542. The SK gene of the highest producer strain was selected for production of rSK in E.coli system. The rSKs activities were determined using chromogenic assay. RESULTS: ßHS were detected in 75 of the collected specimens (29.4%) including groups A (25.8%), C (3.6%) and G (0.4%). Analyses by SDS-PAGE and Western blotting indicated the proper expression of 47 kDa rSK proteins in E. coli for SK genes which were cloned from both the selected (GCS-87) and standard (GCS-9542) strains with the yields of 0.53 and 0.59 mg/ml (of the purified protein), respectively. The calculated activity for rSK 87 was around 90% of rSK9542 activity (0.18x105 IU/mg v/s 0.21x105 IU/mg). CONCLUSION: RESULTS of the present study for the first time provided the possibility of producing rSK from a local and native source with comparable yields and activities similar to the standard strain.

SELECTION OF CITATIONS
SEARCH DETAIL
...