Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Respir Physiol Neurobiol ; 323: 104228, 2024 May.
Article in English | MEDLINE | ID: mdl-38309488

ABSTRACT

PURPOSE: This study examined the magnitude of physiological strain imposed by repeated maximal static and dynamic apneas through assessing a panel of stress-related biomarkers. METHODS: Eleven healthy men performed on three separate occasions (≥72-h apart): a series of five repeated maximal (i) static (STA) or (ii) dynamic apneas (DYN) or (iii) a static eupneic protocol (CTL). Venous blood samples were drawn at 30, 90, and 180-min after each protocol to determine ischaemia modified albumin (IMA), neuron-specific enolase (NSE), myoglobin, and high sensitivity cardiac troponin T (hscTnT) concentrations. RESULTS: IMA was elevated after the apnoeic interventions (STA,+86%;DYN,+332%,p ≤ 0.047) but not CTL (p = 0.385). Myoglobin was higher than baseline (23.6 ± 3.9 ng/mL) 30-min post DYN (+70%,38.8 ± 13.3 ng/mL,p = 0.030). A greater myoglobin release was recorded in DYN compared with STA and CTL (p ≤ 0.035). No changes were observed in NSE (p = 0.207) or hscTnT (p = 0.274). CONCLUSIONS: Five repeated maximal DYN led to a greater muscle injury compared with STA but neither elicited myocardial injury or neuronal-parenchymal damage.


Subject(s)
Apnea , Diving , Male , Humans , Biomarkers , Myoglobin , Diving/physiology , Serum Albumin
2.
Am J Physiol Regul Integr Comp Physiol ; 326(4): R319-R329, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38314699

ABSTRACT

Breath-holding preceded by either an overnight fast or hyperventilation has been shown to potentiate the risk of a hypoxic blackout. However, no study has explored the combined effects of fasting and hyperventilation on apneic performance and associated physiological responses. Nine nondivers (8 males) attended the laboratory on two separate occasions (≥48 h apart), both after a 12-h overnight fast. During each visit, a hyperoxic rebreathing trial was performed followed by three repeated maximal static apneas preceded by either normal breathing (NORM) or a 30-s hyperventilation (HYPER). Splenic volume, hematology, cardiovascular, and respiratory variables were monitored. There were no interprotocol differences at rest or during hyperoxic rebreathing for any variable (P ≥ 0.09). On nine occasions (8 in HYPER), the subjects reached our safety threshold (oxygen saturation 65%) and were asked to abort their apneas, with the preponderance of these incidents (6 of 9) occurring during the third repetition. Across the sequential attempts, longer apneas were recorded in HYPER [median(range), 220(123-324) s vs. 185(78-296) s, P ≤ 0.001], with involuntary breathing movements occurring later [134(65-234) s vs. 97(42-200) s, P ≤ 0.001] and end-apneic partial end-tidal pressures of oxygen (PETO2) being lower (P ≤ 0.02). During the final repetition, partial end-tidal pressure of carbon dioxide [(PETCO2), 6.53 ± 0.46 kPa vs. 6.01 ± 0.45 kPa, P = 0.005] was lower in HYPER. Over the serial attempts, preapneic tidal volume was gradually elevated [from apnea 1 to 3, by 0.26 ± 0.24 L (HYPER) and 0.28 ± 0.30 L (NORM), P ≤ 0.025], with a correlation noted with preapneic PETCO2 (r = -0.57, P < 0.001) and PETO2 (r = 0.76, P < 0.001), respectively. In a fasted state, preapnea hyperventilation compared with normal breathing leads to longer apneas but may increase the susceptibility to a hypoxic blackout.NEW & NOTEWORTHY This study shows that breath-holds (apneas) preceded by a 12-h overnight fast coupled with a 30-s hyperventilation as opposed to normal breathing may increase the likelihood of a hypoxic blackout through delaying the excitation of hypercapnic ventilatory sensory chemoreflexes. Evidently, this risk is exacerbated over a series of repeated maximal attempts, possibly due to a shift in preapneic gas tensions facilitated by an unintentional increase in tidal volume breathing.


Subject(s)
Apnea , Hyperoxia , Male , Humans , Apnea/diagnosis , Hyperventilation , Breath Holding , Respiration , Carbon Dioxide , Hypoxia , Syncope , Fasting/physiology
3.
Am J Physiol Regul Integr Comp Physiol ; 326(3): R197-R209, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38189165

ABSTRACT

Divers are at enhanced risk of suffering from acute cognitive deterioration because of the low ambient temperatures and the narcotic action of inert gases inspired at high pressures. Yet, the behavioral effects of cold and inert gas narcosis have commonly been assessed in isolation and during short-term provocations. We therefore evaluated the interactive influence of mild hypothermia and narcosis engendered by a subanesthetic dose of nitrous oxide (N2O; a normobaric intervention analog of hyperbaric nitrogen) on cognitive function during prolonged iterative exposure. Fourteen men partook in two ∼12-h sessions (separated by ≥4 days), wherein they performed sequentially three 120-min cold (20°C) water immersions (CWIs), while inhaling, in a single-blinded manner, either normal air or a normoxic gas mixture containing 30% N2O. CWIs were separated by a 120-min rewarming in room-air breathing conditions. Before the first CWI and during each CWI, subjects performed a finger dexterity test, and the Spaceflight Cognitive Assessment Tool for Windows (WinSCAT) test assessing aspects of attention, memory, learning, and visuospatial ability. Rectal and skin temperatures were, on average, reduced by ∼1.2 °C and ∼8 °C, respectively (P < 0.001). Cooling per se impaired (P ≤ 0.01) only short-term memory (∼37%) and learning (∼18%); the impairments were limited to the first CWI. N2O also attenuated (P ≤ 0.02) short-term memory (∼37%) and learning (∼35%), but the reductions occurred in all CWIs. Furthermore, N2O invariably compromised finger dexterity, attention, concentration, working memory, and spatial processing (P < 0.05). The present results demonstrate that inert gas narcosis aggravates, in a persistent manner, basic and higher-order cognitive abilities during protracted cold exposure.


Subject(s)
Hypothermia , Inert Gas Narcosis , Stupor , Humans , Male , Cognition , Fingers , Hypothermia/chemically induced , Inert Gas Narcosis/etiology , Motor Skills , Nitrous Oxide/adverse effects , Stupor/complications , Single-Blind Method
4.
Perception ; 53(2): 75-92, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37946509

ABSTRACT

During coordinated flight and centrifugation, pilots show interindividual variability in perceived roll tilt. The study explored how this variability is related to perceptual and cognitive functions. Twelve pilots underwent three 6-min centrifugations on two occasions (G levels: 1.1G, 1.8G, and 2.5G; gondola tilts: 25°, 56°, and 66°). The subjective visual horizontal (SVH) was measured with an adjustable luminous line and the pilots gave estimates of experienced G level. Afterward, they were interrogated regarding the relationship between G level and roll tilt and adjusted the line to numerically mentioned angles. Generally, the roll tilt during centrifugation was underestimated, and there was a large interindividual variability. Both knowledge on the relationship between G level and bank angle, and ability to adjust the line according to given angles contributed to the prediction of SVH in a multiple regression model. However, in most cases, SVH was substantial smaller than predictions based on specific abilities.


Subject(s)
Pilots , Humans , Centrifugation
5.
Eur J Appl Physiol ; 124(4): 1253-1258, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37991551

ABSTRACT

PURPOSE: We evaluated the hypothesis that repetitive gravitoinertial stress would augment the arterial-pressure response to peripheral sympathetic stimulation. METHODS: Before and after a 5-weeks G-training regimen conducted in a human-use centrifuge, twenty healthy men performed a hand cold-pressor test, and nine of them also a foot cold-pressor test (4 min; 4 °C water). Arterial pressures and total peripheral resistance were monitored. RESULTS: The cold-induced elevation (P ≤ 0.002) in arterial pressures and total peripheral resistance did not vary between testing periods, either in the hand [mean arterial pressure: Before = + 16% vs. After = + 17% and total peripheral resistance: Before = + 13% vs. After = + 15%], or in the foot [mean arterial pressure: Before = + 19% vs. After = + 21% and total peripheral resistance: Before = + 16% vs. After = + 16%] cold-pressor tests (P > 0.05). CONCLUSION: Present results demonstrate that 5 weeks of prolonged iterative exposure to hypergravity does not alter the responsiveness of sympathetically mediated circulatory reflexes.


Subject(s)
Arterial Pressure , Reflex , Male , Humans , Blood Pressure/physiology , Vascular Resistance/physiology , Hand , Sympathetic Nervous System/physiology , Cold Temperature , Heart Rate/physiology
6.
J Appl Physiol (1985) ; 135(3): 631-641, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37471214

ABSTRACT

Divers are at enhanced risk of hypothermia, due to the independent action of the inspired inert gases on thermoregulation. Thus, narcosis induced by acute (≤2 h) exposure to either hyperbaric nitrogen or normobaric nitrous oxide (N2O) impairs shivering thermogenesis and accelerates body core cooling. Animal-based studies, however, have indicated that repeated and sustained N2O administration may prevent N2O-evoked hypometabolism. We, therefore, examined the effects of prolonged intermittent exposure to 30% N2O on human thermoeffector plasticity in response to moderate cold. Fourteen men participated in two ∼12-h sessions, during which they performed sequentially three 120-min cold-water immersions (CWIs) in 20°C water, separated by 120-min rewarming. During CWIs, subjects were breathing either normal air or a normoxic gas mixture containing 30% N2O. Rectal and skin temperatures, metabolic heat production (via indirect calorimetry), finger and forearm cutaneous vascular conductance (CVC; laser-Doppler fluxmetry/mean arterial pressure), and thermal sensation and comfort were monitored. N2O aggravated the drop in rectal temperature (P = 0.01), especially during the first (by ∼0.3°C) and third (by ∼0.4°C) CWIs. N2O invariably blunted the cold-induced elevation of metabolic heat production by ∼22%-25% (P < 0.001). During the initial ∼30 min of the first and second CWIs, N2O attenuated the cold-induced drop in finger (P ≤ 0.001), but not in forearm CVC. N2O alleviated the sensation of coldness and thermal discomfort throughout (P < 0.001). Thus, the present results demonstrate that, regardless of the cumulative duration of gas exposure, a subanesthetic dose of N2O depresses human thermoregulatory functions and precipitates the development of hypothermia.NEW & NOTEWORTHY Human thermoeffector plasticity was evaluated in response to prolonged iterative exposure to 30% N2O and moderate cold stress. Regardless of the duration of gas exposure, N2O-induced narcosis impaired in a persistent manner shivering thermogenesis and thermoperception.


Subject(s)
Hypothermia , Stupor , Male , Animals , Humans , Nitrous Oxide , Hypothermia/metabolism , Cold-Shock Response , Body Temperature Regulation/physiology , Thermogenesis , Shivering/physiology , Cold Temperature , Water
7.
Am J Physiol Regul Integr Comp Physiol ; 325(1): R21-R30, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37154507

ABSTRACT

The study examined intra- and interlimb variations in cutaneous vessel responsiveness to acute and repeated transmural pressure elevations. In 11 healthy men, red blood cell flux was assessed via laser-Doppler flowmetry on both glabrous and nonglabrous skin regions of an arm (finger and forearm) and leg (toe and lower leg), across a wide range of stepwise increasing distending pressures imposed in the vessels of each limb separately. The pressure-flux cutaneous responses were evaluated before and after 5 wk of intermittent (40 min, 3 sessions per week) exposures to hypergravity (∼2.6-3.3 G; G training). Before and after G training, forearm and lower leg blood flux were relatively stable up to ∼210 and ∼240 mmHg distending pressures, respectively; and then they increased two- to threefold (P < 0.001). Finger blood flux dropped promptly (P < 0.001), regardless of the G training (P = 0.64). At ≤120-mmHg distending pressures, toe blood flux enhanced by ∼40% (P ≤ 0.05); the increase was augmented after the G training (P = 0.01). At high distending pressures, toe blood flux dropped by ∼70% in both trials (P < 0.001). The present results demonstrate that circulatory autoregulation is more pronounced in glabrous skin than in nonglabrous skin, and in nonglabrous sites of the leg than in those of the arm. Repetitive high-sustained gravitoinertial stress does not modify the pressure-flow relationship in the dependent skin vessels of the arm nor in the nonglabrous sites of the lower leg. Yet it may partly inhibit the myogenic responsiveness of the toe's glabrous skin.


Subject(s)
Hypergravity , Male , Humans , Hypergravity/adverse effects , Skin , Forearm , Fingers , Leg , Regional Blood Flow/physiology , Laser-Doppler Flowmetry
8.
Am J Physiol Regul Integr Comp Physiol ; 323(1): R1-R15, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35502861

ABSTRACT

We sought to examine whether short-term, whole body cold acclimation would modulate finger vasoreactivity and thermosensitivity to localized cooling. Fourteen men were equally assigned to either the experimental (CA) or the control (CON) group. The CA group was immersed to the chest in 14°C water for ≤120 min daily over a 5-day period while the skin temperature of the right-hand fingers was clamped at ∼35.5°C. The CON group was instructed to avoid any cold exposure during this period. Before and after the intervention, both groups performed, on two different consecutive days, a local cold provocation trial consisting of a 30-min hand immersion in 8°C water while immersed to the chest once in 21°C (mild-hypothermic trial; 0.5°C fall in rectal temperature from individual preimmersion values) and on the other occasion in 35.5°C (normothermic trial). In the CA group, the cold-induced reduction in finger temperature was less (mild-hypothermic trial: P = 0.05; normothermic trial: P = 0.02), and the incidence of the cold-induced vasodilation episodes was greater (in normothermic trials: P = 0.04) in the post- than in the preacclimation trials. The right-hand thermal discomfort was also attenuated (mild-hypothermic trial: P = 0.04; normothermic trial: P = 0.01). The finger temperature responses of the CON group did not vary between testing periods. Our findings suggest that repetitive whole body exposure to severe cold within a week may attenuate finger vasoreactivity and thermosensitivity to localized cooling. These regional thermo-adaptions were ascribed to central neural habituation produced by the iterative, generalized cold stimulation.


Subject(s)
Cold Temperature , Hypothermia , Body Temperature , Fingers , Humans , Immersion , Male , Skin Temperature , Vasodilation/physiology , Water
9.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R597-R608, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35470711

ABSTRACT

Despite decades of experience from high-gravitoinertial (G) exposures in aircraft and centrifuges, information is scarce regarding primary cardiovascular adaptations to +Gz loads in relaxed humans. Thus, effects of G-training are typically evaluated after regimens that are confounded by concomitant use of anti-G straining maneuvers, anti-G suits, and pressure breathing. Accordingly, the aim was to evaluate cardiovascular adaptations to repeated +Gz exposures in the relaxed state. Eleven men underwent 5 wk of centrifuge G training, consisting of 15 × 40 min +Gz exposures at G levels close to their individual relaxed G-level tolerance. Before and after the training regimen, relaxed G-level tolerance was investigated during rapid onset-rate (ROR) and gradual onset-rate (GOR) G exposures, and cardiovascular responses were investigated during orthostatic provocation and vascular pressure-distension tests. The G training resulted in: 1) a 13% increase in relaxed ROR G tolerance (P < 0.001), but no change in GOR G tolerance, 2) increased pressure resistance in the arteries and arterioles of the legs (P < 0.001), but not the arms, and 3) a reduced initial drop in arterial pressure upon ROR high G, but no change in arterial pressure under basal resting conditions or during GOR G loading, or orthostatic provocation. The results suggest +Gz adaptation via enhanced pressure resistance in dependent arteries/arterioles. Presumably, this reflects local adaptations to high transmural pressures, resulting from the +Gz-induced exaggeration of the intravascular hydrostatic pressure gradients.


Subject(s)
Aerospace Medicine , Hypergravity , Acceleration , Adaptation, Physiological/physiology , Centrifugation , Humans , Hypergravity/adverse effects , Male
10.
Am J Physiol Regul Integr Comp Physiol ; 321(6): R813-R822, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34585615

ABSTRACT

This retrospective study was designed to analyze the interindividual variability in the responses of different variables characterizing the skeletal muscle oxidative function to normoxic (N-BR) and hypoxic (H-BR) bed rests and to a hypoxic ambulatory confinement (H-AMB) of 10 and 21 days. We also assessed whether and how the addition of hypoxia to bed rest might influence the heterogeneity of the responses. In vivo measurements of O2 uptake and muscle fractional O2 extraction were carried out during an incremental one-leg knee-extension exercise. Mitochondrial respiration was assessed in permeabilized muscle fibers. A total of 17 subjects were included in this analysis. This analysis revealed a similar variability among subjects in the alterations induced by N-BR and H-BR both in peak O2 uptake (SD: 4.1% and 3.3% after 10 days; 4.5% and 8.1% after 21 days, respectively) and peak muscle fractional O2 extraction (SD: 5.9% and 7.3% after 10 days; 6.5% and 7.3% after 21 days), independently from the duration of the exposure. The individual changes measured in these variables were significantly related (r = 0.66, P = 0.004 after N-BR; r = 0.61, P = 0.009 after H-BR). Mitochondrial respiration showed a large variability of response after both N-BR (SD: 25.0% and 15.7% after 10 and 21 days) and H-BR (SD: 13.0% and 19.8% after 10 and 21 days); no correlation was found between N-BR and H-BR changes. When added to bed rest, hypoxia altered the individual adaptations within the mitochondria but not those intrinsic to the muscle oxidative function in vivo, both after the short- and medium-term exposures.


Subject(s)
Bed Rest , Biological Variation, Population , Hypoxia/blood , Mitochondria, Muscle/metabolism , Oxygen Consumption , Oxygen/blood , Quadriceps Muscle/metabolism , Weightlessness Simulation , Adaptation, Physiological , Adult , Humans , Hypoxia/physiopathology , Male , Quadriceps Muscle/physiopathology , Retrospective Studies , Sedentary Behavior , Time Factors , Young Adult
11.
Am J Physiol Regul Integr Comp Physiol ; 321(5): R742-R750, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34523378

ABSTRACT

We examined the in vivo pressure-flow relationship in human cutaneous vessels during acute and repeated elevations of local transmural pressure. In 10 healthy men, red blood cell flux was monitored simultaneously on the nonglabrous skin of the forearm and the glabrous skin of a finger during a vascular pressure provocation, wherein the blood vessels of an arm were exposed to a wide range of stepwise increasing distending pressures. Forearm skin blood flux was relatively stable at slight and moderate elevations of distending pressure, whereas it increased approximately three- to fourfold at the highest levels (P = 0.004). Finger blood flux, on the contrary, dropped promptly and consistently throughout the provocation (P < 0.001). Eight of the subjects repeated the provocation trial after a 5-wk pressure-training regimen, during which the vasculature in one arm was exposed intermittently (40 min, 3 times/wk) to increased transmural pressure (from +65 mmHg week 1 to +105 mmHg week 5). The training regimen diminished the pressure-induced increase in forearm blood flux by ∼34% (P = 0.02), whereas it inhibited the reduction in finger blood flux (P < 0.001) in response to slight and moderate distending pressure elevations. The present findings demonstrate that during local pressure perturbations, the cutaneous autoregulatory function is accentuated in glabrous compared with in the nonglabrous skin regions. Prolonged intermittent regional exposures to augmented intravascular pressure blunt the responsiveness of the glabrous skin but enhance arteriolar pressure resistance in the nonglabrous skin.


Subject(s)
Arterioles/physiology , Blood Pressure , Microcirculation , Skin/blood supply , Adult , Fingers , Forearm , Healthy Volunteers , Homeostasis , Humans , Laser-Doppler Flowmetry , Male , Regional Blood Flow , Time Factors , Vascular Resistance , Young Adult
12.
Exp Physiol ; 106(7): 1498-1507, 2021 07.
Article in English | MEDLINE | ID: mdl-33938053

ABSTRACT

NEW FINDINGS: What is the central question of this study? Does a 35-day horizontal bedrest impair thermoeffector responses during whole-body submaximal exercise performed in temperate conditions? What is the main finding and its importance? Cardiovascular and muscular deconditioning ensuing from prolonged recumbency seems to augment, at least to a degree, exercise-induced increase in body core temperature, most likely due to an impairment in non-evaporative heat loss. The response is a function of the absolute exercise intensity imposed. ABSTRACT: We examined the effects of a 35-day horizontal bedrest on thermoregulation during whole-body exercise. Fifteen healthy men were randomly assigned to either a bedrest (BR; n = 10) or a control (CON; n = 5) group. Prior to bedrest, both groups performed 40-min constant-load upright cycling at 30% of their peak workload (Wpeak ; PRE). One and 2 days after bedrest, the BR group performed, in a randomised counterbalanced order, two 40-min trials at 30% of (i) the pre-bedrest Wpeak (i.e., at a fixed absolute intensity; POST-A) and (ii) the post-bedrest Wpeak (i.e., at a fixed relative intensity; POST-R). The CON group conducted only the POST-A trial, at the same time intervals. During the trials, rectal (Trec ) and skin ( T¯sk ) temperatures, and the forehead sweating rate (SwR) were monitored. In the CON group, no differences were observed between the trials. Bedrest potentiated moderately the Trec elevation during the latter part of POST-A (∼0.10°C; P ≤ 0.05), but not of POST-R (∼0.04°C; P = 0.11). In both post-bedrest trials, T¯sk was attenuated by ∼1.5-2.0°C throughout (P < 0.01), whereas the forehead SwR was not modulated. Trec and T¯sk were similar in POST-A and POST-R, yet the forehead SwR was more dependent on the relative workload imposed (P = 0.04). The present findings therefore suggest that the cardiovascular and muscular deconditioning ensuing from a 35-day bedrest may aggravate the exercise-induced increase in body core temperature when working at a given absolute intensity, most likely due to an impairment in non-evaporative heat loss.


Subject(s)
Bed Rest , Body Temperature , Body Temperature/physiology , Body Temperature Regulation/physiology , Exercise/physiology , Hot Temperature , Humans , Male , Skin Temperature , Sweating , Temperature
13.
Microvasc Res ; 137: 104181, 2021 09.
Article in English | MEDLINE | ID: mdl-34015276

ABSTRACT

PURPOSE: To examine the effects of prolonged intermittent exposures to moderately increased transmural pressure on finger vasoreactivity and thermoperception to localised cooling. METHODS: Eleven men completed a 5-week regimen (3 sessions·week-1; 55 min·session-1), during which the vasculature in one arm (EXP) was exposed intermittently (10-min exposure: 5-min pause) to increased transmural pressure (from +65 mmHg week-1 to +105 mmHg week-5). Before and after the regimen, finger cutaneous vascular conductance (CVC), temperature (Tavg), and thermoperception (thermal sensation, discomfort and pain) were monitored during a 30-min hand cold (8 °C water) provocation trial. The responses of the non-trained hand were examined during an additional cold trial. RESULTS: After the regimen, baseline finger CVC and Tavg were higher in both hands (p ≤ 0.01). During cooling, neither finger CVC nor Tavg were modified (p > 0.05). Yet the magnitude of the cold-induced drop of CVC was augmented in both hands, and to a similar extent (p ≤ 0.02). The regimen alleviated thermal pain in both hands (p ≤ 0.02); the sensation of coldness and thermal discomfort were attenuated mainly in the EXP hand (p = 0.02). CONCLUSIONS: Present findings indicate that iterative local exposures to augmented intravascular pressure do not alter finger vasoreactivity to localised cooling. The pressure training, however, might impair finger basal vasomotor tone, and aggravate the magnitude of constrictor responsiveness to cooling. The pressure training also elicits thermoperceptual desensitisation to noxious thermal stimulus. To large extent, these vascular and perceptual adjustments seem to be transferred to the cutaneous vasculature of the non-trained limb.


Subject(s)
Blood Pressure , Hypothermia, Induced , Pain Perception , Skin/blood supply , Skin/innervation , Thermosensing , Vasoconstriction , Adaptation, Physiological , Adult , Cold Temperature , Fingers , Healthy Volunteers , Humans , Male , Regional Blood Flow , Time Factors , Young Adult
14.
Exp Physiol ; 106(5): 1139-1148, 2021 05.
Article in English | MEDLINE | ID: mdl-33745159

ABSTRACT

NEW FINDINGS: What is the topic of this review? It is generally accepted that sleep deprivation constitutes a predisposing factor to the development of thermal injury. This review summarizes the available human-based evidence on the impact of sleep loss on autonomic and behavioural thermoeffectors during acute exposure to low and high ambient temperatures. What advances does it highlight? Limited to moderate evidence suggests that sleep deprivation per se impairs thermoregulatory defence mechanisms during exposure to thermal extremes. Future research is required to establish whether inadequate sleep enhances the risk for cold- and heat-related illnesses. ABSTRACT: Relatively short periods of inadequate sleep provoke physiological and psychological perturbations, typically leading to functional impairments and degradation in performance. It is commonly accepted that sleep deprivation also disturbs thermal homeostasis, plausibly enhancing susceptibility to cold- and heat-related illnesses. Herein, we summarize the current state of human-based evidence on the impact of short-term (i.e., ≤4 nights) sleep deprivation on autonomic and behavioural thermoeffectors during acute exposure to low and high ambient temperatures. The purpose of this brief narrative review is to highlight knowledge gaps in the area and stimulate future research to investigate whether sleep deprivation constitutes a predisposing factor for the development of thermal injuries.


Subject(s)
Heat Stress Disorders , Sleep Deprivation , Body Temperature Regulation/physiology , Cold Temperature , Hot Temperature , Humans , Sleep
15.
Front Physiol ; 12: 777611, 2021.
Article in English | MEDLINE | ID: mdl-34975531

ABSTRACT

Hematological changes are commonly observed following prolonged exposure to hypoxia and bed rest. Typically, such responses have been reported as means and standard deviations, however, investigation into the responses of individuals is insufficient. Therefore, the present study retrospectively assessed individual variation in the hematological responses to severe inactivity (bed rest) and hypoxia. The data were derived from three-bed rest projects: two 10-d (LunHab project: 8 males; FemHab project: 12 females), and one 21-d (PlanHab project: 11 males). Each project comprised a normoxic bed rest (NBR; PIO2=133mmHg) and hypoxic bed rest (HBR; PIO2=91mmHg) intervention, where the subjects were confined in the Planica facility (Ratece, Slovenia). During the HBR intervention, subjects were exposed to normobaric hypoxia equivalent to an altitude of 4,000m. NBR and HBR interventions were conducted in a random order and separated by a washout period. Blood was drawn prior to (Pre), during, and post bed rest (R1, R2, R4) to analyze the individual variation in the responses of red blood cells (RBC), erythropoietin (EPO), and reticulocytes (Rct) to bed rest and hypoxia. No significant differences were found in the mean ∆(Pre-Post) values of EPO across projects (LunHab, FemHab, and PlanHab; p>0.05), however, female EPO responses to NBR (Range - 17.39, IQR - 12.97 mIU.ml-1) and HBR (Range - 49.00, IQR - 10.91 mIU.ml-1) were larger than males (LunHab NBR Range - 4.60, IQR - 2.03; HBR Range - 7.10, IQR - 2.78; PlanHab NBR Range - 7.23, IQR - 1.37; HBR Range - 9.72, IQR - 4.91 mIU.ml-1). Bed rest duration had no impact on the heterogeneity of EPO, Rct, and RBC responses (10-d v 21-d). The resultant hematological changes that occur during NBR and HBR are not proportional to the acute EPO response. The following cascade of hematological responses to NBR and HBR suggests that the source of variability in the present data is due to mechanisms related to hypoxia as opposed to inactivity alone. Studies investigating hematological changes should structure their study design to explore these mechanistic responses and elucidate the discord between the EPO response and hematological cascade to fully assess heterogeneity.

16.
Exp Physiol ; 105(12): 2123-2140, 2020 12.
Article in English | MEDLINE | ID: mdl-33140429

ABSTRACT

NEW FINDINGS: What is the central question of this study? In male lowlanders, does hypoxia modulate thermoregulatory effector responses during repeated whole-body cold stress encountered in a single day? What is the main finding and its importance? A ∼10 h sustained exposure to hypoxia appears to mediate a gradual upregulation of endogenous heat production, preventing the progressive hypothermic response prompted by serial cold stimuli. Also, hypoxia progressively degrades mood, and compounds the perceived thermal discomfort, and sensations of fatigue and coldness. ABSTRACT: We examined whether hypoxia would modulate thermoeffector responses during repeated cold stress encountered in a single day. Eleven men completed two ∼10 h sessions, while breathing, in normobaria, either normoxia or hypoxia ( PO2 : 12 kPa). During each session, subjects underwent sequentially three 120 min immersions to the chest in 20°C water (CWI), interspersed by 120 min rewarming. In normoxia, the final drop in rectal temperature (Trec ) was greater in the third (∼1.2°C) than in the first and second (∼0.9°C) CWIs (P < 0.05). The first hypoxic CWI augmented the Trec fall (∼1.2°C; P = 0.002), but the drop in Trec did not vary between the three hypoxic CWIs (P = 0.99). In normoxia, the metabolic heat production ( Ṁ ) was greater during the first half of the third CWI than during the corresponding part of the first CWI (P = 0.02); yet the difference was blunted during the second half of the CWIs (P = 0.89). In hypoxia, by contrast, the increase in Ṁ was augmented by ∼25% throughout the third CWI (P < 0.01). Regardless of the breathing condition, the cold-induced elevation in mean arterial pressure was blunted in the second and third CWI (P < 0.05). Hypoxia aggravated the sensation of coldness (P = 0.05) and thermal discomfort (P = 0.04) during the second half of the third CWI. The present findings therefore demonstrate that prolonged hypoxia mediates, in a gradual manner, metabolic and thermoperceptual sensitization to repeated cold stress.


Subject(s)
Body Temperature Regulation/physiology , Cold-Shock Response/physiology , Hypoxia/metabolism , Hypoxia/physiopathology , Adult , Body Temperature/physiology , Cold Temperature , Exercise/physiology , Hot Temperature , Humans , Hypothermia/metabolism , Hypothermia/physiopathology , Immersion/physiopathology , Male , Respiration , Thermogenesis/physiology , Water/metabolism , Young Adult
17.
Appl Ergon ; 82: 102964, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31604187

ABSTRACT

The purpose was to evaluate whether a cold-water immersion test could be used to identify individuals susceptible to local cold injuries (LCI). Sixty-five healthy non-injured (N-I) subjects, and fifteen subjects, who were tested either prior to or after a LCI, sequentially immersed one hand and one foot, in 8 °C water for 30 min (CWI phase); this was followed by 15 min of spontaneous rewarming (RW phase). The LCI group showed a lower toe temperature during the CWI phase, and a lower maximum RW temperature of the fingers than the N-I group. However, digit temperatures during the CWI and RW phases exhibited low predictive values for LCI, e.g. results implied that to identify 80% of the LCI subjects, 34-78% of the N-I subjects would also be excluded. Thus, the results suggest that, in practice, hand or foot cold-water immersion tests cannot be used to identify individuals at high risk of LCI.


Subject(s)
Cold Injury/diagnosis , Cold Injury/prevention & control , Fingers/blood supply , Military Personnel , Toes/blood supply , Cold Temperature , Female , Humans , Immersion , Male , Predictive Value of Tests , Protective Clothing , Rewarming , Risk Factors , Skin Temperature , Sweden , Young Adult
18.
Am J Physiol Regul Integr Comp Physiol ; 317(3): R418-R431, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31241983

ABSTRACT

We examined the interactive effects of mild hypothermia and hypoxia on finger vasoreactivity to local cold stress. Eight male lowlanders performed, in a counterbalanced order, a normoxic and a hypoxic (partial pressure of oxygen: ~12 kPa) hand cold provocation (consisting of a 30-min immersion in 8°C water), while immersed to the chest either in 21°C [cold trials; 0.5°C fall in rectal temperature (Trec) from individual preimmersion values], or in 35.5°C water, or while exposed to 27°C air. The duration of the trials was kept constant in each breathing condition. Physiological (Trec, skin temperature, cutaneous vascular conductance, oxygen uptake) and perceptual (thermal sensation and comfort, local pain, affective valence) reactions were monitored continually. Hypoxia accelerated the drop in Trec by ~14 min (P = 0.06, d = 0.67). In the air-exposure trials, hypoxia did not alter finger perfusion during the local cooling, whereas it impaired the finger rewarming response following the cooling (P < 0.01). During the 35.5°C immersion, the finger vasomotor tone was enhanced, especially in hypoxia (P = 0.01). Mild hypothermia aggravated finger vasoconstriction instigated by local cooling (P < 0.01), but the response did not differ between the two breathing conditions (P > 0.05). Hypoxia tended to attenuate the sensation of coldness (P = 0.10, r = 0.40) and thermal discomfort (P = 0.09, r = 0.46) in the immersed hand. Both in normoxia and hypoxia, the whole body thermal state dictates the cutaneous vasomotor reactivity to localized cold stimulus.


Subject(s)
Cold Temperature , Fingers/blood supply , Hypothermia , Hypoxia , Adult , Humans , Male , Oxygen/metabolism , Vasoconstriction
19.
Chronobiol Int ; 35(10): 1464-1470, 2018 09.
Article in English | MEDLINE | ID: mdl-29985669

ABSTRACT

The purpose of the study was to evaluate the recuperative efficacy of pre-exercise napping on physical capacity after military sustained operations (SUSOPS) with partial sleep deprivation. Before and after a 2-day SUSOPS, 61 cadets completed a battery of questionnaires, and performed a 2-min lunges trial and a 3,000-m running time-trial. After the completion of SUSOPS, subjects were randomized to either a control [without pre-exercise nap (CON); n = 32] or a nap [with a 30-min pre-exercise nap (NAP); n = 29] group. SUSOPS enhanced perceived sleepiness and degraded mood in both groups. Following SUSOPS, the repetitions of lunges, in the CON group, were reduced by ~ 2.3%, albeit the difference was not statistically significant (p = 0.62). In the NAP group, however, the repetitions of lunges were increased by ~ 7.1% (p = 0.01). SUSOPS impaired the 3,000-m running performance in the CON group (~ 2.3%; p = 0.02), but not in the NAP group (0.3%; p = 0.71). Present results indicate, therefore, that a relatively brief pre-exercise nap may mitigate physical performance impairments ensued by short-term SUSOPS.


Subject(s)
Circadian Rhythm , Physical Functional Performance , Sleep , Task Performance and Analysis , Adult , Fatigue , Female , Humans , Male , Young Adult
20.
Eur J Appl Physiol ; 118(7): 1373-1384, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29687266

ABSTRACT

PURPOSE: The study examined the effects of short-term field-based military training with partial sleep deprivation on whole-body endurance performance in well-trained individuals. METHODS: Before and after a 2-day sustained operations (SUSOPS), 14 cadets performed a 15-min constant-load cycling at 65% of peak power output (PPO; CLT65), followed by an exhaustive constant-load trial at 85% of PPO (CLT85). Physiological [oxygen uptake ([Formula: see text]O2), heart rate (HR), mean arterial pressure (MAP), cardiac output (CO), and regional oxygenation (TOI) in the frontal cerebral cortex and vastus lateralis muscle] and psychological [effort perception (RPE), affective valence (FS), and perceived activation (FAS)] variables were monitored during exercise. RESULTS: SUSOPS reduced time to exhaustion in CLT85 by 29.1% (p = 0.01). During the CLT65 trial, SUSOPS potentiated the exercise-induced elevations in [Formula: see text]O2 and HR (p < 0.05), and blunted MAP (p = 0.001). CO did not differ between trials. Yet, towards the end of both CLT85 trials, CO tended to decline (p ≤ 0.08); a response that occurred at an earlier stage in the SUSOPS trial. During CLT65, SUSOPS altered neither cerebral nor muscle TOI. The SUSOPS CLT85 trial, however, was terminated at similar leg-muscle deoxygenation (p > 0.05) and lower prefrontal cortex deoxygenation (p < 0.01). SUSOPS increased RPE at submaximal intensities (p = 0.05), and suppressed FAS and FS throughout (p < 0.01). CONCLUSIONS: The present findings indicate, therefore, that a brief period of military sustained operations with partial sleep deprivation augment cardiorespiratory and psychological strain, limiting high-intensity endurance capacity.


Subject(s)
Anaerobic Threshold , Exercise Tolerance , Perception , Physical Conditioning, Human/physiology , Sleep Deprivation/physiopathology , Adult , Blood Pressure , Cardiac Output , Female , Heart Rate , Humans , Male , Military Personnel , Physical Conditioning, Human/psychology , Sleep Deprivation/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...