Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Nutr ; 42(2): 235-243, 2023 02.
Article in English | MEDLINE | ID: mdl-36680919

ABSTRACT

BACKGROUND: Intention-to-treat analyses do not address adherence. Per protocol analyses treat nonadherence as a protocol deviation and assess if the intervention is effective if followed. OBJECTIVE: To determine the rate of early preterm birth (EPTB, <34 weeks gestation) and preterm birth (PTB, <37 weeks gestation) in participants who adhered to a randomly assigned docosahexaenoic acid (DHA) dose of 1000 mg/day. STUDY DESIGN: Eleven hundred women with a singleton pregnancy were enrolled before 20-weeks' gestation, provided a capsule with 200 mg/day DHA and randomly assigned to two additional capsules containing a placebo or 800 mg of DHA. In the Bayesian Adaptive Design, new randomization schedules were determined at prespecified intervals. In each randomization, the group with the most EPTB was assigned fewer participants than the other group. Adherence was defined a priori as a postpartum red blood cell phospholipid DHA (RBC-PL-DHA) ≥5.5%.and post hoc as ≥8.0% RBC-PL-DHA, the latter after examination of postpartum RBC-PL-DHA. Bayesian mixture models were fitted for gestational age and dichotomized for EPTB and PTB as a function of baseline RBC-PL-DHA and dose-adherence. Bayesian hierarchical models were also fitted for EPTB by dose adherence and quartiles of baseline RBC-PL-DHA. RESULTS: Adherence to the high dose using both RBC-PL-DHA cut points resulted in less EPTB compared to 200 mg [Bayesian posterior probability (pp) = 0.93 and 0.92, respectively]. For participants in the two lowest quartiles of baseline DHA status, adherence to the higher dose resulted in lower EPTB (≥5.5% RBC-PL-DHA, quartiles 1 and 2, pp = 0.95 and 0.96; ≥8% RBC-PL-DHA, quartiles 1 and 2, pp = 0.94 and 0.95). Using the Bayesian model, EPTB was reduced by 65%, from 3.45% to 1.2%, using both cut points. Adherence also reduced PTB before 35, 36 and 37 weeks using both cut points (pp ≥ 0.95). In general, performance of the nonadherent subgroup mirrored that of participants assigned to 200 mg. CONCLUSION: Adherence to high dose DHA reduced EPTB and PTB. The largest effect of adherence on reducing EPTB was observed in women with low baseline DHA levels. CLINICALTRIALS: gov (NCT02626299).


Subject(s)
Premature Birth , Female , Humans , Infant, Newborn , Pregnancy , Bayes Theorem , Dietary Supplements , Docosahexaenoic Acids , Gestational Age , Premature Birth/prevention & control
2.
Clin Nutr ESPEN ; 53: 93-99, 2023 02.
Article in English | MEDLINE | ID: mdl-36657936

ABSTRACT

BACKGROUND: Two randomized trials found women with low blood docosahexaenoic acid (DHA; an omega 3 fatty acid) had fewer early preterm births (<34 weeks gestation) if they were assigned to high dose DHA supplementation, however, there is currently no capacity for clinicians who care for pregnancies to obtain a blood assessment of DHA. Determining a way to identify women with low DHA intake whose risk could be lowered by high dose DHA supplementation is desired. OBJECTIVE: To determine if assessing DHA intake can identify pregnancies that benefit from high dose DHA supplementation. STUDY DESIGN: This secondary analysis used birth data from 1310 pregnant women who completed a 7-question food frequency questionnaire (DHA-FFQ) at 16.8 ± 2.5 weeks gestation that is validated to assess DHA status. They were then randomly assigned to a standard (200 mg/day) or high dose (800 or 1000 mg/day) DHA supplement for the remainder of pregnancy. Bayesian logistic regressions were fitted for early preterm birth and preterm birth as a function of DHA intake and assigned DHA dose. RESULTS: Participants who consumed less than 150 mg/day DHA prior to 20 weeks' gestation (n = 810/1310, 58.1%) had a lower Bayesian posterior probability (pp) of early preterm birth if they were assigned to high dose DHA supplementation (1.4% vs 3.9%, pp = 0.99). The effect on preterm birth (<37 weeks) was also significant (11.3% vs 14.8%, pp = 0.97). CONCLUSION: The DHA-FFQ can identify pregnancies that will benefit most from high dose DHA supplementation and reduce the risk of preterm birth. The DHA-FFQ is low burden to providers and patients and could be easily implemented in obstetrical practice.


Subject(s)
Fatty Acids, Omega-3 , Premature Birth , Female , Humans , Infant, Newborn , Pregnancy , Bayes Theorem , Dietary Supplements , Docosahexaenoic Acids , Premature Birth/prevention & control
3.
Article in English | MEDLINE | ID: mdl-35063884

ABSTRACT

Docosahexaenoic acid (DHA) intake was estimated in pregnant women between 12- and 20-weeks' gestation using the National Cancer Institute's (NCI) Diet History Questionnaire-II (DHQ-II) and a 7-question screener designed to capture DHA intake (DHA Food Frequency Questionnaire, DHA-FFQ). Results from both methods were compared to red blood cell phospholipid DHA (RBC-DHA) weight percent of total fatty acids. DHA intake from the DHA-FFQ was more highly correlated with RBC-DHA (rs=0.528) than the DHQ-II (rs=0.352). Moreover, the DHA-FFQ allowed us to obtain reliable intake data from 1355 of 1400 participants. The DHQ-II provided reliable intake for only 847 of 1400, because many participants only partially completed it and it was not validated for Hispanic participants. Maternal age, parity, and socioeconomic status (SES) were also significant predictors of RBC-DHA. When included with estimated intake from the DHA-FFQ, the model accounted for 36% of the variation in RBC-DHA.


Subject(s)
Diet , Pregnant Women , Docosahexaenoic Acids , Erythrocytes , Fatty Acids , Female , Humans , Pregnancy , Surveys and Questionnaires , United States
4.
Article in English | MEDLINE | ID: mdl-27499448

ABSTRACT

The Kansas University DHA Outcomes Study (KUDOS) found a significant reduction in early preterm births with a supplement of 600mg DHA per day compared to placebo. The objective of this analysis was to determine if hospital costs differed between groups. We applied a post-hoc cost analysis of the delivery hospitalization and all hospitalizations in the following year to 197 mother-infant dyads who delivered at Kansas University Hospital. Hospital cost saving of DHA supplementation amounted to $1678 per infant. Even after adjusting for the estimated cost of providing 600mg/d DHA for 26 weeks ($166.48) and a slightly higher maternal care cost ($26) in the DHA group, the net saving per dyad was $1484. Extrapolating this to the nearly 4 million US deliveries per year suggests universal supplementation with 600mg/d during the last 2 trimesters of pregnancy could save the US health care system up to USD 6 billion.


Subject(s)
Docosahexaenoic Acids/administration & dosage , Hospitalization/economics , Premature Birth/epidemiology , Cost Savings , Dietary Supplements/economics , Female , Health Care Costs/trends , Humans , Maternal Nutritional Physiological Phenomena , Pregnancy , Pregnancy Outcome/economics , Pregnancy Trimester, Second , Pregnancy Trimester, Third , Premature Birth/economics , Premature Birth/prevention & control
5.
Article in English | MEDLINE | ID: mdl-25936840

ABSTRACT

Long chain polyunsaturated fatty acids (LCPUFA) are added to infant formula but their effect on long-term growth of children is under studied. We evaluated the effects of feeding LCPUFA-supplemented formula (n = 54) compared to control formula (n = 15) throughout infancy on growth from birth-6 years. Growth was described using separate models developed with the MIXED procedure of SAS(®) that included maternal smoking history and gender. Compared to children fed control formula, children who consumed LCPUFA supplemented formula had higher length-/stature-/and weight-for-age percentiles but not body mass index (BMI) percentile from birth to 6 years. Maternal smoking predicted lower stature (2-6 years), higher weight-for-length (birth-18 months) and BMI percentile (2-6 years) independent of LCPUFA effects. Gender interacted with the effect of LCPUFA on stature, and the relationship between smoking and BMI, with a larger effect for boys. Energy intake did not explain growth differences. A relatively small control sample is a limitation.


Subject(s)
Body Height/drug effects , Body Weight/drug effects , Fatty Acids, Unsaturated/administration & dosage , Infant Formula/chemistry , Smoking/adverse effects , Body Mass Index , Child , Child, Preschool , Dietary Supplements , Fatty Acids, Unsaturated/pharmacology , Female , Humans , Infant , Infant Formula/administration & dosage , Infant, Newborn , Male , Maternal-Fetal Exchange , Pregnancy
6.
Article in English | MEDLINE | ID: mdl-25500337

ABSTRACT

Some FADS alleles are associated with lower DHA and ARA status assessed by the relative amount of arachidonic acid (ARA) and docosahexaenoic acid (DHA) in plasma and red blood cell (RBC) phospholipids (PL). We determined two FADS single nucleotide polymorphisms (SNPs) in a cohort of pregnant women and examined the relationship of FADS1rs174533 and FADS2rs174575 to DHA and ARA status before and after supplementation with 600mg per day of DHA. The 205 pregnant women studied were randomly assigned to placebo (mixed soy and corn oil) (n=96) or 600mg algal DHA (n=109) in 3 capsules per day for the last two trimesters of pregnancy. Women homozygous for the minor allele of FADS1rs174533 (but not FADS2rs174575) had lower DHA and ARA status at baseline. At delivery, minor allele homozygotes of FADS1rs174533 in the placebo group had lower RBC-DHA compared to major-allele carriers (P=0.031), while in the DHA-supplemented group, all genotypes had higher DHA status compared to baseline (P=0.001) and status did not differ by genotype (P=0.941). Surprisingly, DHA but not the placebo decreased ARA status of minor allele homozygotes of both FADS SNPs but not major allele homozygotes at delivery. Any physiological effects of changing the DHA to ARA ratio by increasing DHA intake appears to be greater in minor allele homozygotes of some FADS SNPs.


Subject(s)
Arachidonic Acid/blood , Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/pharmacokinetics , Fatty Acid Desaturases/genetics , Adolescent , Adult , Delta-5 Fatty Acid Desaturase , Drug Administration Schedule , Female , Genotype , Humans , Polymorphism, Single Nucleotide , Pregnancy , Young Adult
7.
Article in English | MEDLINE | ID: mdl-23433688

ABSTRACT

DHA (22:6n-3) supplementation during infancy has been associated with lower heart rate (HR) and improved neurobehavioral outcomes. We hypothesized that maternal DHA supplementation would improve fetal cardiac autonomic control and newborn neurobehavior. Pregnant women were randomized to 600 mg/day of DHA or placebo oil capsules at 14.4 (+/-4) weeks gestation. Fetal HR and HRV were calculated from magnetocardiograms (MCGs) at 24, 32 and 36 weeks gestational age (GA). Newborn neurobehavior was assessed using the Neonatal Behavioral Assessment Scale (NBAS). Post-partum maternal and infant red blood cell (RBC) DHA was significantly higher in the supplemented group as were metrics of fetal HRV and newborn neurobehavior in the autonomic and motor clusters. Higher HRV is associated with more responsive and flexible autonomic nervous system (ANS). Coupled with findings of improved autonomic and motor behavior, these data suggest that maternal DHA supplementation during pregnancy may impart an adaptive advantage to the fetus.


Subject(s)
Dietary Supplements , Docosahexaenoic Acids/administration & dosage , Heart Rate, Fetal , Adult , Docosahexaenoic Acids/blood , Double-Blind Method , Erythrocytes/metabolism , Female , Fetal Blood/metabolism , Gestational Age , Humans , Magnetocardiography , Maternal-Fetal Exchange , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL