Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Biosci ; 22(5): e2100445, 2022 05.
Article in English | MEDLINE | ID: mdl-35182032

ABSTRACT

pH-responsive nanoparticles have generated significant interest for use as drug delivery systems due to their potential for inducible release at low pH. The pH variation from the bloodstream (pH 7.4) to intracellular compartments of cells called endosomes/lysosomes (pH < 5.0) has been of particular interest. However, one of the limitations with nanoparticle delivery systems is the inability to migrate out of these compartments to the cytosol or other organelles, via a process termed endosomal escape. Previous studies have postulated that pH-responsive nanoparticles can facilitate endosomal escape through a range of mechanisms including membrane interaction, pH-induced swelling, and the proton-sponge effect. In this study, a series of pH-swellable nanoparticles (85-100 nm) are designed and their impact on biological interactions, particularly endosomal escape, are investigated. The particles exhibit tunable pH-induced swelling (from 120% to 200%) and have good buffering capacity. The cellular association is studied using flow cytometry and endosomal escape is determined using a calcein leakage assay. Interestingly, no endosomal escape with all nanoparticle formulations is found, which suggests there are limitations with both the proton-sponge effect and pH-induced swelling mechanism as the primary methods for inducing endosomal escape.


Subject(s)
Nanoparticles , Protons , Drug Delivery Systems , Endosomes , Hydrogen-Ion Concentration
2.
Biomacromolecules ; 22(9): 3892-3900, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34410113

ABSTRACT

Self-immolative polymers have significant potential for applications such as drug or gene delivery. However, to realize this potential, such materials need to be customized to respond to specific variations in biological conditions. In this work, we investigated the design of new star-shaped self-immolative poly(ethyl glyoxylate)s (PEtGs) and their incorporation into responsive nanoparticles. PEtGs are a subclass of stimulus-responsive self-immolative polymers, which can be combined with different stimuli-responsive functionalities. Two different tetrathiol initiators were used for the polymerization in combination with a variety of potential pH-responsive end-caps, yielding a library of star PEtG polymers which were responsive to pH. Characterization of the depolymerization behavior of the polymers showed that the depolymerization rate was controlled by the end caps rather than the architecture of the polymer. A selection of the star polymers were modified with amines to allow introduction of charge-shifting properties. It was shown that pH-responsive nanoparticles could be prepared from these modified polymers and they demonstrated pH-dependent particle disruption. The pH responsiveness of these particles was studied by dynamic light scattering and 1H nuclear magnetic resonance spectroscopy.


Subject(s)
Nanoparticles , Pharmaceutical Preparations , Glyoxylates , Hydrogen-Ion Concentration , Polymerization , Polymers
3.
Macromol Rapid Commun ; 41(18): e2000298, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32686228

ABSTRACT

Multicompartment polymeric nanocarriers which mimic the compartmentalized architecture of living cells have received considerable research attention in the biomedical field. The advancement of synthetic polymeric chemistry has allowed multicompartment polymeric nanocarriers to be tailored for biomedical applications such as drug delivery, encapsulated catalysis, and artificial cellular mimics. In this review, polymer-based multicompartment nanocarriers (multicompartment micelles, multicompartment polymersomes, and capsosomes) have been discussed. This review focuses on multicompartment systems applied to biomedical applications over the last ten years. The synthetic procedures and structural properties that impact the specific application are also highlighted.


Subject(s)
Artificial Cells , Drug Carriers , Drug Delivery Systems , Micelles , Polymers
4.
Macromol Rapid Commun ; 40(10): e1800917, 2019 May.
Article in English | MEDLINE | ID: mdl-30835923

ABSTRACT

Stimuli-responsive nanoparticles have the potential to improve the delivery of therapeutics to a specific cell or region within the body. There are many stimuli that have shown potential for specific release of cargo, including variation of pH, redox potential, or the presence of enzymes. pH variation has generated significant interest for the synthesis of stimuli-responsive nanoparticles because nanoparticles are internalized into cells via vesicles that are acidified. Additionally, the tumor microenvironment is known to have a lower pH than the surrounding tissue. In this review, different strategies to design pH-responsive nanoparticles are discussed, focusing on the use of charge-shifting polymers, acid labile linkages, and crosslinking.


Subject(s)
Drug Delivery Systems , Drug Liberation , Nanoparticles/chemistry , Polymers/chemistry , Humans , Hydrogen-Ion Concentration , Nanoparticles/therapeutic use , Polymers/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL