Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 11: 1350151, 2024.
Article in English | MEDLINE | ID: mdl-38638639

ABSTRACT

Introduction: Microbiota plays a pivotal role in promoting the health and wellbeing of poultry. Essential oils (EOs) serve as an alternative solution for modulating poultry microbiota. This study aimed to investigate, using amplicon sequencing, the effect of a complex and well-defined combination of EOs feed supplement on both ileal and caecal broiler microbiota, within the context of Salmonella and Campylobacter intestinal colonization. Material and methods: For this experiment, 150-day-old Ross chicks were randomly allocated to two groups: T+ (feed supplementation with EO mix 500 g/t) and T- (non-supplemented). At day 7, 30 birds from each group were orally inoculated with 106 CFU/bird of a Salmonella enteritidis and transferred to the second room, forming the following groups: TS+ (30 challenged birds receiving infeed EO mix at 500g/t) and TS- (30 challenged birds receiving a non-supplemented control feed). At day 14, the remaining birds in the first room were orally inoculated with 103 CFU/bird of two strains of Campylobacter jejuni, resulting in the formation of groups T+C+ and T-C+. Birds were sacrificed at day 7, D10, D14, D17, and D21. Ileal and caecal microbiota samples were analyzed using Illumina MiSeq sequencing. At D7 and D14, ileal alpha diversity was higher for treated birds (p <0.05). Results and discussion: No significant differences between groups were observed in caecal alpha diversity (p>0.05). The ileal beta diversity exhibited differences between groups at D7 (p < 0.008), D10 (p = 0.029), D14 (p = 0.001) and D17 (p = 0.018), but not at D21 (p = 0.54). For all time points, the analysis indicated that 6 biomarkers were negatively impacted, while 10 biomarkers were positively impacted. Sellimonas and Weissella returned the lowest (negative) and highest (positive) coefficient, respectively. At each time point, treatments influenced caecal microbiota beta diversity (p < 0.001); 31 genera were associated with T+: 10 Ruminoccocaceae genera were alternatively more abundant and less abundant from D7, 7 Lachnospiraceae genera were alternatively more and less abundant from D10, 6 Oscillospiraceae genera were variable depending on the date and 4 Enterobacteriaceae differed from D7. During all the experiment, Campylobacter decreased in treated birds (p < 0.05). This study showed that EO mix modulates ileal and caecal microbiota composition both before and during challenge conditions, increasing alpha diversity, especially in ileum during the early stages of chick life.

2.
Animals (Basel) ; 13(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37958074

ABSTRACT

Acute Hepatopancreatic Necrosis Disease (AHPND) is a serious and emerging disease caused by a group of strains of Vibrio parahaemolyticus and affects farmed shrimp, particularly whiteleg shrimps (Liptopenaeus vannamei). The objective of this study is to assess the effect of dietary supplementation with two dosages of an essential oil mixture (Phyto AquaBiotic, abbreviated as PAB) on growth performance and mortality reduction after challenge against V. parahaemolyticus. PAB was mixed with basal diets at rates of 0, 1 and 2 g/kg and fed for 42 days. Each tank was stocked with 100 individuals with experimentation performed in triplicate. The results showed an improvement in growth performance in a dose-dependent manner, specifically regarding daily weight gain, specific growth rate and total biomass, which were significantly improved compared to control (p < 0.05). Further, PAB significantly reduced mortalities when challenged against Vibrio parahaemolyticus (p < 0.05) and decreased Vibrio spp. count in the hepatopancreas of infected shrimp. Overall, PAB was efficient in reducing mortalities in cases of disease outbreaks at a rate of 2 g/kg.

3.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37895914

ABSTRACT

On account of the widespread development and propagation of antimicrobial-resistant (AMR) bacteria, essential oils (EOs) have emerged as potential alternatives to antibiotics. However, as already observed for antibiotics, recent studies have raised concerns regarding the potential emergence of resistant variants (RVs) to EOs. In this study, we assessed the emergence of RVs in Escherichia coli and Salmonella enterica Typhimurium after evolution assays under extended exposure to subinhibitory doses of two commercial EOs (AEN and COLIFIT) as well as to two antibiotics (amoxicillin and colistin). Phenotypic characterization of RVs from evolution assays with commercial EOs yielded no relevant increases in the minimum inhibitory concentration (MIC) of E. coli and did not even modify MIC values in S. Typhimurium. Conversely, RVs of E. coli and S. Typhimurium isolated from evolution assays with antibiotics showed increased resistance. Genotypic analysis demonstrated that resistance to commercial EOs was associated with enhanced protection against oxidative stress and redirection of cell energy toward efflux activity, while resistance to antibiotics was primarily linked to modifications in the cell binding sites of antibiotics. These findings suggest that AEN and COLIFIT could serve as safe alternatives to antibiotics in combating the emergence and dissemination of antimicrobial resistance within the agrifood system.

4.
Molecules ; 27(18)2022 Sep 18.
Article in English | MEDLINE | ID: mdl-36144832

ABSTRACT

(1) Background: This study evaluated the effects of a plant bioactive (Phyto Ax'Cell, Phytosynthese, Mozac, France) on the inflammatory status and health of dairy cows during calving. (2) Methods: 46 Holstein crossbred cows were randomized into a control group (CON, n = 23) and the Phyto Ax'Cell group (PAC, n = 23). PAC received Phyto Ax'Cell at 25 g/cow/day, from 15 days prepartum to 7 days postpartum. Blood analyses were performed weekly from D-7 to D14 to evaluate the energy metabolism and inflammatory status; rectal temperature was measured daily within 14 days from calving day (D0). (3) Results: PAC showed lower serum haptoglobin at D7 (0.55 vs. 0.79 mg/mL; p < 0.05) and D14 (0.44 vs. 0.66 mg/mL; p < 0.05). CON had a higher number of circulating white blood cells and granulocytes on D7 (p < 0.05). Fewer cows from PAC showed hyperthermia (≥39 °C) during the first 2 weeks postpartum (−7%, p < 0.05). Energy metabolism, which was represented by the NEFA/cholesterol ratio, improved (0.21 vs. 0.36 at D0, p < 0.1; 0.19 and 0.15 vs. 0.36 and 0.32, respectively, at D+7 and D+14, p < 0.05) under the plant bioactive supplementation. (4) Conclusions: The results suggest that the anti-inflammatory plant bioactive compound with Brazilian green propolis administered during calving had a beneficial effect on the energy and inflammatory status of dairy cows.


Subject(s)
Milk , Propolis , Animals , Cattle , Diet/veterinary , Dietary Supplements , Fatty Acids, Nonesterified/metabolism , Female , Haptoglobins/metabolism , Haptoglobins/pharmacology , Lactation , Milk/metabolism , Phytochemicals/pharmacology , Propolis/pharmacology
5.
Animals (Basel) ; 11(7)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34359152

ABSTRACT

This study evaluates the efficacy of two plant-based feed supplementations to fight colibacillosis in weanlings. A total of 96 piglets (32 pens) were assigned to four diets: a control diet (T1) or supplemented with ZnO (2500 ppm Zn) (T2) or two different plant supplements, T3 (1 kg/t; based on essential oils) and T4 (T3 + 1.5 kg/t based on non-volatile compounds). After one week, animals were challenged with ETEC F4, and 8 days after, one animal per pen was euthanized. Performance, clinical signs, microbial analysis, inflammatory response, intestinal morphology, and ileal gene expression were assessed. ZnO improved daily gains 4 days after challenge, T3 and T4 showing intermediate values (96, 249, 170, and 157 g/d for T1, T2, T3, and T4, p = 0.035). Fecal lactobacilli were higher with T3 and T4 compared to ZnO (7.55, 6.26, 8.71, and 8.27 cfu/gFM; p = 0.0007) and T3 increased the lactobacilli/coliforms ratio (p = 0.002). T4 was associated with lower levels of Pig-MAP (p = 0.07) and increases in villus/crypt ratio (1.49, 1.90, 1.73, and 1.84; p = 0.009). Moreover, T4 was associated with an upregulation of the REG3G gene (p = 0.013; pFDR = 0.228) involved in the immune response induced by enteric pathogens. In conclusion, both plant supplements enhanced animal response in front of an ETEC F4 challenge probably based on different modes of action.

SELECTION OF CITATIONS
SEARCH DETAIL
...