Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Surg ; 11: 1356501, 2024.
Article in English | MEDLINE | ID: mdl-38831786

ABSTRACT

Introduction: Patients with congenital heart disease (CHD) often have pulmonary abnormalities and exercise intolerance following cardiac surgery. Cardiac rehabilitation (CR) improves exercise capacity in patients with CHD, but minimal study has been performed to see if resting and dynamic pulmonary performance improves following CR in those with prior cardiac surgery. Methods: This was a retrospective cohort study of all patients who completed ≥12 weeks of CR from 2018 through 2022. Demographic, cardiopulmonary exercise test (CPET), spirometry, 6-minute walk, functional strength measures, and outcomes data were collected. Data are presented as median[IQR]. A Student's t-test was used for comparisons between groups and serial measurements were measured with a paired t-test. A p < 0.05 was considered significant. Results: There were a total of 37 patients [age 16.7 (14.2-20.1) years; 46% male] included. Patients with prior surgery (n = 26) were more likely to have abnormal spirometry data than those without heart disease (n = 11) (forced vital capacity [FVC] 76.7 [69.1-84.3]% vs. 96.4 [88.1-104.7]%, p = 0.002), but neither group experienced a significant change in spirometry. On CPET, peak oxygen consumption increased but there was no change in other pulmonary measures during exercise. Percent predicted FVC correlated with hand grip strength (r = 0.57, p = 0.0003) and percent predicted oxygen consumption (r = 0.43, p = 0.009). The number of prior sternotomies showed negative associations with both percent predicted FVC (r = -0.43, p = 0.04) and FEV1 (r = -0.47, p = 0.02). Discussion: Youth and young adults with a prior history of cardiac surgery have resting and dynamic pulmonary abnormalities that do not improve following CR. Multiple sternotomies are associated with worse pulmonary function.

2.
Med Sci Sports Exerc ; 55(8): 1499-1506, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36940200

ABSTRACT

INTRODUCTION: Aberrant gait variability has been observed after anterior cruciate ligament reconstruction (ACLR), yet it remains unknown if gait variability is associated with early changes in cartilage composition linked to osteoarthritis development. Our purpose was to determine the association between femoral articular cartilage T1ρ magnetic resonance imaging relaxation times and gait variability. METHODS: T1ρ magnetic resonance imaging and gait kinematics were collected in 22 ACLR participants (13 women; 21 ± 4 yr old; 7.52 ± 1.43 months post-ACLR). Femoral articular cartilage from the ACLR and uninjured limbs were segmented into anterior, central, and posterior regions from the weight-bearing portions of the medial and lateral condyles. Mean T1ρ relaxation times were extracted from each region and interlimb ratios (ILR) were calculated (i.e., ACLR/uninjured limb). Greater T1ρ ILR values were interpreted as less proteoglycan density (worse cartilage composition) in the injured limb compared with the uninjured limb. Knee kinematics were collected at a self-selected comfortable walking speed on a treadmill with an eight-camera three-dimensional motion capture system. Frontal and sagittal plane kinematics were extracted, and sample entropy was used to calculate kinematic variability structure (KV structure ). Pearson's product-moment correlations were conducted to determine the associations between T1ρ and KV structure variables. RESULTS: Lesser frontal plane KV structure was associated with greater mean T1ρ ILR in the anterior lateral ( r = - 0.44, P = 0.04) and anterior medial condyles ( r = - 0.47, P = 0 .03). Lesser sagittal plane KV structure was associated with greater mean T1ρ ILR in the anterior lateral condyle ( r = - 0.47, P = 0.03). CONCLUSIONS: The association between less KV structure and worse femoral articular cartilage proteoglycan density suggests a link between less variable knee kinematics and deleterious changes joint tissue changes. The findings suggest that less knee kinematic variability structure is a mechanism linking aberrant gait to early osteoarthritis development.


Subject(s)
Anterior Cruciate Ligament Injuries , Cartilage, Articular , Osteoarthritis, Knee , Humans , Female , Anterior Cruciate Ligament Injuries/surgery , Gait , Knee Joint , Cartilage, Articular/chemistry , Osteoarthritis, Knee/pathology , Magnetic Resonance Imaging/methods , Proteoglycans/analysis , Biomechanical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL