Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Alzheimers Res Ther ; 16(1): 108, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745197

ABSTRACT

BACKGROUND: Sporadic cerebral amyloid angiopathy (sCAA) is a disease characterised by the progressive deposition of the amyloid beta (Aß) in the cerebral vasculature, capable of causing a variety of symptoms, from (mild) cognitive impairment, to micro- and major haemorrhagic lesions. Modern diagnosis of sCAA relies on radiological detection of late-stage hallmarks of disease, complicating early diagnosis and potential interventions in disease progression. Our goal in this study was to identify and validate novel biomarkers for sCAA. METHODS: We performed a proximity extension assay (PEA) on cerebrospinal fluid (CSF) samples of sCAA/control participants (n = 34/51). Additionally, we attempted to validate the top candidate biomarker in CSF and serum samples (n = 38/26) in a largely overlapping validation cohort, through analysis with a targeted immunoassay. RESULTS: Thirteen proteins were differentially expressed through PEA, with top candidate NFL significantly increased in CSF of sCAA patients (p < 0.0001). Validation analyses using immunoassays revealed increased CSF and serum NFL levels in sCAA patients (both p < 0.0001) with good discrimination between sCAA and controls (AUC: 0.85; AUC: 0.79 respectively). Additionally, the CSF: serum NFL ratio was significantly elevated in sCAA (p = 0.002). DISCUSSION: Large-scale targeted proteomics screening of CSF of sCAA patients and controls identified thirteen biomarker candidates for sCAA. Orthogonal validation of NFL identified NFL in CSF and serum as biomarker, capable of differentiating between sCAA patients and controls.


Subject(s)
Biomarkers , Cerebral Amyloid Angiopathy , Neurofilament Proteins , Humans , Female , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Cerebral Amyloid Angiopathy/cerebrospinal fluid , Cerebral Amyloid Angiopathy/diagnosis , Male , Neurofilament Proteins/cerebrospinal fluid , Neurofilament Proteins/blood , Aged , Middle Aged , Immunoassay/methods
2.
Ann Neurol ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38624158

ABSTRACT

OBJECTIVE: Recent evidence shows that during slow-wave sleep (SWS), the brain is cleared from potentially toxic metabolites, such as the amyloid-beta protein. Poor sleep or elevated cortisol levels can worsen amyloid-beta clearance, potentially leading to the formation of amyloid plaques, a neuropathological hallmark of Alzheimer disease. Here, we explored how nocturnal neural and endocrine activity affects amyloid-beta fluctuations in the peripheral blood. METHODS: We acquired simultaneous polysomnography and all-night blood sampling in 60 healthy volunteers aged 20-68 years. Nocturnal plasma concentrations of amyloid-beta-40, amyloid-beta-42, cortisol, and growth hormone were assessed every 20 minutes. Amyloid-beta fluctuations were modeled with sleep stages, (non)oscillatory power, and hormones as predictors while controlling for age and participant-specific random effects. RESULTS: Amyloid-beta-40 and amyloid-beta-42 levels correlated positively with growth hormone concentrations, SWS proportion, and slow-wave (0.3-4Hz) oscillatory and high-band (30-48Hz) nonoscillatory power, but negatively with cortisol concentrations and rapid eye movement sleep (REM) proportion measured 40-100 minutes previously (all t values > |3|, p values < 0.003). Older participants showed higher amyloid-beta-40 levels. INTERPRETATION: Slow-wave oscillations are associated with higher plasma amyloid-beta levels, whereas REM sleep is related to decreased amyloid-beta plasma levels, possibly representing changes in central amyloid-beta production or clearance. Strong associations between cortisol, growth hormone, and amyloid-beta presumably reflect the sleep-regulating role of the corresponding releasing hormones. A positive association between age and amyloid-beta-40 may indicate that peripheral clearance becomes less efficient with age. ANN NEUROL 2024.

3.
J Neurochem ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38362804

ABSTRACT

Brain amyloid-ß (Aß) deposits are key pathological hallmarks of both cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD). Microvascular deposits in CAA mainly consist of the Aß40 peptide, whereas Aß42 is the predominant variant in parenchymal plaques in AD. The relevance in pathogenesis and diagnostic accuracy of various other Aß isoforms in CAA remain understudied. We aimed to investigate the biomarker potential of various Aß isoforms in cerebrospinal fluid (CSF) to differentiate CAA from AD pathology. We included 25 patients with probable CAA, 50 subjects with a CSF profile indicative of AD pathology (AD-like), and 23 age- and sex-matched controls. CSF levels of Aß1-34 , Aß1-37 , Aß1-38 , Aß1-39 , Aß1-40 , and Aß1-42 were quantified by liquid chromatography mass spectrometry. Lower CSF levels of all six Aß peptides were observed in CAA patients compared with controls (p = 0.0005-0.03). Except for Aß1-42 (p = 1.0), all peptides were decreased in CAA compared with AD-like subjects (p = 0.007-0.03). Besides Aß1-42 , none of the Aß peptides were decreased in AD-like subjects compared with controls. All Aß peptides combined differentiated CAA from AD-like subjects better (area under the curve [AUC] 0.84) than individual peptide levels (AUC 0.51-0.75). Without Aß1-42 in the model (since decreased Aß1-42 served as AD-like selection criterion), the AUC was 0.78 for distinguishing CAA from AD-like subjects. CAA patients and AD-like subjects showed distinct disease-specific CSF Aß profiles. Peptides shorter than Aß1-42 were decreased in CAA patients, but not AD-like subjects, which could suggest different pathological mechanisms between vascular and parenchymal Aß accumulation. This study supports the potential use of this panel of CSF Aß peptides to indicate presence of CAA pathology with high accuracy.

4.
Acta Neuropathol Commun ; 12(1): 6, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191511

ABSTRACT

Cerebral amyloid angiopathy (CAA) is a form of small vessel disease characterised by the progressive deposition of amyloid ß protein in the cerebral vasculature, inducing symptoms including cognitive impairment and cerebral haemorrhages. Due to their accessibility and homogeneous disease phenotypes, animal models are advantageous platforms to study diseases like CAA. Untargeted proteomics studies of CAA rat models (e.g. rTg-DI) and CAA patients provide opportunities for the identification of novel biomarkers of CAA. We performed untargeted, data-independent acquisition proteomic shotgun analyses on the cerebrospinal fluid of rTg-DI rats and wild-type (WT) littermates. Rodents were analysed at 3 months (n = 6/10), 6 months (n = 8/8), and 12 months (n = 10/10) for rTg-DI and WT respectively. For humans, proteomic analyses were performed on CSF of sporadic CAA patients (sCAA) and control participants (n = 39/28). We show recurring patterns of differentially expressed (mostly increased) proteins in the rTg-DI rats compared to wild type rats, especially of proteases of the cathepsin protein family (CTSB, CTSD, CTSS), and their main inhibitor (CST3). In sCAA patients, decreased levels of synaptic proteins (e.g. including VGF, NPTX1, NRXN2) and several members of the granin family (SCG1, SCG2, SCG3, SCG5) compared to controls were discovered. Additionally, several serine protease inhibitors of the SERPIN protein family (including SERPINA3, SERPINC1 and SERPING1) were differentially expressed compared to controls. Fifteen proteins were significantly altered in both rTg-DI rats and sCAA patients, including (amongst others) SCG5 and SERPING1. These results identify specific groups of proteins likely involved in, or affected by, pathophysiological processes involved in CAA pathology such as protease and synapse function of rTg-DI rat models and sCAA patients, and may serve as candidate biomarkers for sCAA.


Subject(s)
Cerebral Amyloid Angiopathy , Rodentia , Humans , Rats , Animals , Complement C1 Inhibitor Protein , Amyloid beta-Peptides , Proteomics , Endopeptidases , Biomarkers
5.
Alzheimers Res Ther ; 15(1): 102, 2023 06 03.
Article in English | MEDLINE | ID: mdl-37270536

ABSTRACT

BACKGROUND: The diagnosis of probable cerebral amyloid angiopathy (CAA) is currently mostly based on characteristics of brain MRI. Blood biomarkers would be a cost-effective, easily accessible diagnostic method that may complement diagnosis by MRI and aid in monitoring disease progression. We studied the diagnostic potential of plasma Aß38, Aß40, and Aß42 in patients with hereditary Dutch-type CAA (D-CAA) and sporadic CAA (sCAA). METHODS: All Aß peptides were quantified in the plasma by immunoassays in a discovery cohort (11 patients with presymptomatic D-CAA and 24 patients with symptomatic D-CAA, and 16 and 24 matched controls, respectively) and an independent validation cohort (54 patients with D-CAA, 26 presymptomatic and 28 symptomatic, and 39 and 46 matched controls, respectively). In addition, peptides were quantified in the plasma in a group of 61 patients with sCAA and 42 matched controls. We compared Aß peptide levels between patients and controls using linear regression adjusting for age and sex. RESULTS: In the discovery cohort, we found significantly decreased levels of all Aß peptides in patients with presymptomatic D-CAA (Aß38: p < 0.001; Aß40: p = 0.009; Aß42: p < 0.001) and patients with symptomatic D-CAA (Aß38: p < 0.001; Aß40: p = 0.01; Aß42: p < 0.001) compared with controls. In contrast, in the validation cohort, plasma Aß38, Aß40, and Aß42 were similar in patients with presymptomatic D-CAA and controls (Aß38: p = 0.18; Aß40: p = 0.28; Aß42: p = 0.63). In patients with symptomatic D-CAA and controls, plasma Aß38 and Aß40 were similar (Aß38: p = 0.14; Aß40: p = 0.38), whereas plasma Aß42 was significantly decreased in patients with symptomatic D-CAA (p = 0.033). Plasma Aß38, Aß40, and Aß42 levels were similar in patients with sCAA and controls (Aß38: p = 0.092; Aß40: p = 0.64. Aß42: p = 0.68). CONCLUSIONS: Plasma Aß42 levels, but not plasma Aß38 and Aß40, may be used as a biomarker for patients with symptomatic D-CAA. In contrast, plasma Aß38, Aß40, and Aß42 levels do not appear to be applicable as a biomarker in patients with sCAA.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Humans , Amyloid beta-Peptides , Cerebral Amyloid Angiopathy/diagnostic imaging , Peptide Fragments , Biomarkers , Alzheimer Disease/diagnosis
7.
J Alzheimers Dis ; 92(2): 467-475, 2023.
Article in English | MEDLINE | ID: mdl-36776062

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) share pathogenic pathways related to amyloid-ß deposition. Whereas AD is known to affect synaptic function, such an association for CAA remains yet unknown. OBJECTIVE: We therefore aimed to investigate synaptic dysfunction in CAA. METHODS: Multiple reaction monitoring mass spectrometry was used to quantify cerebrospinal fluid (CSF) concentrations of 15 synaptic proteins in CAA and AD patients, and age- and sex-matched cognitively unimpaired controls. RESULTS: We included 25 patients with CAA, 49 patients with AD, and 25 controls. Only neuronal pentraxin-2 levels were decreased in the CSF of CAA patients compared with controls (p = 0.04). CSF concentrations of 12 other synaptic proteins were all increased in AD compared with CAA or controls (all p≤0.01) and were unchanged between CAA and controls. Synaptic protein concentrations in the subgroup of CAA patients positive for AD biomarkers (CAA/ATN+; n = 6) were similar to AD patients, while levels in CAA/ATN- (n = 19) were comparable with those in controls. A regression model including all synaptic proteins differentiated CAA from AD at high accuracy levels (area under the curve 0.987). CONCLUSION: In contrast to AD, synaptic CSF biomarkers were found to be largely unchanged in CAA. Moreover, concomitant AD pathology in CAA is associated with abnormal synaptic protein levels. Impaired synaptic function in AD was confirmed in this independent cohort. Our findings support an apparent differential involvement of synaptic dysfunction in CAA and AD and may reflect distinct pathological mechanisms.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Humans , Alzheimer Disease/pathology , Cerebral Amyloid Angiopathy/pathology , Amyloid beta-Peptides/metabolism , Biomarkers/cerebrospinal fluid
8.
Alzheimers Res Ther ; 15(1): 26, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36717932

ABSTRACT

BACKGROUND: To evaluate the potential of cerebrospinal fluid (CSF) levels of matrix metalloproteinases and tissue-type inhibitors (MMP; TIMP), and ratios of MMPs to TIMPs, to function as biomarkers for sporadic or hereditary cerebral amyloid angiopathy (CAA). METHODS: CSF concentrations of the matrix metalloproteinases MMP-2, MMP-9 and MMP-14, as well as the tissue inhibitors of metalloproteinases TIMP-1, TIMP-2 and TIMP-3, were determined using immunoassays. These assays were applied to two, independent study groups of sporadic CAA (sCAA) (n = 28/43) and control subjects (n = 40/40), as well as to groups of pre-symptomatic (n = 11) and symptomatic hereditary Dutch-CAA (D-CAA) patients (n = 12), and age-matched controls (n = 22/28, respectively). RESULTS: In the sCAA/control cohorts, inconsistent differences were found for individual MMPs and TIMPs, but MMP-2/TIMP-2 (discovery/validation: p = 0.004; p = 0.02) and MMP-14/TIMP-2 ratios (discovery/validation: p < 0.001; p = 0.04) were consistently decreased in sCAA, compared to controls. Moreover, MMP-14 was decreased in symptomatic D-CAA (p = 0.03), compared to controls. The MMP-14/TIMP-1 (p = 0.03) and MMP-14/TIMP-2 (p = 0.04) ratios were decreased in symptomatic D-CAA compared to controls and also compared to pre-symptomatic D-CAA (p = 0.004; p = 0.005, respectively). CONCLUSION: CSF MMP-2/TIMP-2 and MMP-14/TIMP-2 were consistently decreased in sCAA, compared to controls. Additionally, MMP-14/TIMP-2 levels were also decreased in symptomatic D-CAA, compared to both pre-symptomatic D-CAA and controls, and can therefore be considered a biomarker for sporadic and late-stage hereditary forms of CAA.


Subject(s)
Cerebral Amyloid Angiopathy, Familial , Tissue Inhibitor of Metalloproteinase-2 , Humans , Tissue Inhibitor of Metalloproteinase-1 , Matrix Metalloproteinase 14 , Matrix Metalloproteinase 2
9.
Ann Neurol ; 93(6): 1173-1186, 2023 06.
Article in English | MEDLINE | ID: mdl-36707720

ABSTRACT

OBJECTIVE: Vascular amyloid ß (Aß) accumulation is the hallmark of cerebral amyloid angiopathy (CAA). The composition of cerebrospinal fluid (CSF) of CAA patients may serve as a diagnostic biomarker of CAA. We studied the diagnostic potential of the peptides Aß38, Aß40, Aß42, and Aß43 in patients with sporadic CAA (sCAA), hereditary Dutch-type CAA (D-CAA), and Alzheimer disease (AD). METHODS: Aß peptides were quantified by immunoassays in a discovery group (26 patients with sCAA and 40 controls), a validation group (40 patients with sCAA, 40 patients with AD, and 37 controls), and a group of 22 patients with D-CAA and 54 controls. To determine the diagnostic accuracy, the area under the curve (AUC) was calculated using a receiver operating characteristic curve with 95% confidence interval (CI). RESULTS: We found decreased levels of all Aß peptides in sCAA patients and D-CAA patients compared to controls. The difference was most prominent for Aß42 (AUC of sCAA vs controls for discovery: 0.90, 95% CI = 0.82-0.99; for validation: 0.94, 95% CI = 0.89-0.99) and Aß43 (AUC of sCAA vs controls for discovery: 0.95, 95% CI = 0.88-1.00; for validation: 0.91, 95% CI = 0.83-1.0). All Aß peptides except Aß43 were also decreased in sCAA compared to AD (CSF Aß38: AUC = 0.82, 95% CI = 0.71-0.93; CSF Aß40: AUC = 0.88, 95% CI = 0.80-0.96; CSF Aß42: AUC = 0.79, 95% CI = 0.66-0.92). INTERPRETATION: A combined biomarker panel of CSF Aß38, Aß40, Aß42, and Aß43 has potential to differentiate sCAA from AD and controls, and D-CAA from controls. ANN NEUROL 2023;93:1173-1186.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy, Familial , Cerebral Amyloid Angiopathy , Humans , Amyloid beta-Peptides/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Biomarkers/cerebrospinal fluid
10.
Neuropathol Appl Neurobiol ; 48(5): e12804, 2022 08.
Article in English | MEDLINE | ID: mdl-35266166

ABSTRACT

AIMS: The aim of this work is to study the association of urokinase plasminogen activator (uPA) with development and progression of cerebral amyloid angiopathy (CAA). MATERIALS AND METHODS: We studied the expression of uPA mRNA by quantitative polymerase chain reaction (qPCR) and co-localisation of uPA with amyloid-ß (Aß) using immunohistochemistry in the cerebral vasculature of rTg-DI rats compared with wild-type (WT) rats and in a sporadic CAA (sCAA) patient and control subject using immunohistochemistry. Cerebrospinal fluid (CSF) uPA levels were measured in rTg-DI and WT rats and in two separate cohorts of sCAA and Dutch-type hereditary CAA (D-CAA) patients and controls, using enzyme-linked immunosorbent assays (ELISA). RESULTS: The presence of uPA was clearly detected in the cerebral vasculature of rTg-DI rats and an sCAA patient but not in WT rats or a non-CAA human control. uPA expression was highly co-localised with microvascular Aß deposits. In rTg-DI rats, uPA mRNA expression was highly elevated at 3 months of age (coinciding with the emergence of microvascular Aß deposition) and sustained up to 12 months of age (with severe microvascular CAA deposition) compared with WT rats. CSF uPA levels were elevated in rTg-DI rats compared with WT rats (p = 0.03), and in sCAA patients compared with controls (after adjustment for age of subjects, p = 0.05 and p = 0.03). No differences in CSF uPA levels were found between asymptomatic and symptomatic D-CAA patients and their respective controls (after age-adjustment, p = 0.09 and p = 0.44). Increased cerebrovascular expression of uPA in CAA correlates with increased quantities of CSF uPA in rTg-DI rats and human CAA patients, suggesting that uPA could serve as a biomarker for CAA.


Subject(s)
Cerebral Amyloid Angiopathy , Urokinase-Type Plasminogen Activator , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Cerebral Amyloid Angiopathy/metabolism , Humans , RNA, Messenger/metabolism , Rats , Rodentia/genetics , Rodentia/metabolism , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism
11.
Alzheimers Dement ; 18(10): 1788-1796, 2022 10.
Article in English | MEDLINE | ID: mdl-34874603

ABSTRACT

BACKGROUND: Cerebrospinal fluid (CSF) platelet-derived growth factor receptor-ß (PDGFRß) has been proposed as a biomarker of blood-brain barrier (BBB) breakdown. We studied PDGFRß levels as a biomarker for cerebral amyloid angiopathy (CAA), amnestic mild cognitive impairment (aMCI), or Alzheimer's disease (AD). METHODS: CSF PDGFRß levels were quantified by enzyme-linked immunosorbent assay in patients with CAA, patients with aMCI/AD, and in matched controls. In aMCI/AD we evaluated CSF PDGFRß both by clinical phenotype and by using the AT(N) biomarker classification system defined by CSF amyloid (A), tau (T), and neurodegeneration (N) biomarkers. RESULTS: PDGFRß levels were similar in CAA patients and controls (P = .78) and in aMCI/AD clinical phenotype and controls (P = .91). aMCI/AD patients with an AD+ biomarker profile (A+T+[N+]) had increased PDGFRß levels compared to (A-T-[N-]) controls (P = .006). CONCLUSION: Our findings indicate that PDGFRß levels are associated with an AD+ biomarker profile but are not a suitable biomarker for CAA or aMCI/AD clinical syndrome.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Cognitive Dysfunction , Humans , Alzheimer Disease/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Cerebral Amyloid Angiopathy/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , Receptor, Platelet-Derived Growth Factor beta , tau Proteins/cerebrospinal fluid
12.
NPJ Parkinsons Dis ; 7(1): 107, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34848724

ABSTRACT

The aim of our study was to investigate cerebrospinal fluid (CSF) tryptic peptide profiles as potential diagnostic biomarkers for the discrimination of parkinsonian disorders. CSF samples were collected from individuals with parkinsonism, who had an uncertain diagnosis at the time of inclusion and who were followed for up to 12 years in a longitudinal study. We performed shotgun proteomics to identify tryptic peptides in CSF of Parkinson's disease (PD, n = 10), multiple system atrophy patients (MSA, n = 5) and non-neurological controls (n = 10). We validated tryptic peptides with differential levels between PD and MSA using a newly developed selected reaction monitoring (SRM) assay in CSF of PD (n = 46), atypical parkinsonism patients (AP; MSA, n = 17; Progressive supranuclear palsy; n = 8) and non-neurological controls (n = 39). We identified 191 tryptic peptides that differed significantly between PD and MSA, of which 34 met our criteria for SRM development. For 14/34 peptides we confirmed differences between PD and AP. These tryptic peptides discriminated PD from AP with moderate-to-high accuracy. Random forest modelling including tryptic peptides plus either clinical assessments or other CSF parameters (neurofilament light chain, phosphorylated tau protein) and age improved the discrimination of PD vs. AP. Our results show that the discovery of tryptic peptides by untargeted and subsequent validation by targeted proteomics is a suitable strategy to identify potential CSF biomarkers for PD versus AP. Furthermore, the tryptic peptides, and corresponding proteins, that we identified as differential biomarkers may increase our current knowledge about the disease-specific pathophysiological mechanisms of parkinsonism.

14.
Alzheimers Res Ther ; 13(1): 160, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34560885

ABSTRACT

BACKGROUND: Neuroleukin (NLK) is a protein with neurotrophic properties and is present in a proportion of senile plaques and amyloid laden vessels. It has been suggested that NLK is part of a neuroprotective response to amyloid ß-induced cell death. The aim of our study was to investigate the value of cerebrospinal fluid (CSF) NLK levels as a biomarker of vascular amyloid deposition in patients with cerebral amyloid angiopathy (CAA) and in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD). METHODS: CSF NLK levels were quantified by ELISA in CAA patients (n = 25) and controls (n = 27) and in two independent samples of aMCI patients, AD patients, and controls: (1) From the Radboud University Medical Center (Nijmegen), we included n = 19 aMCI patients, n = 40 AD patients, and n = 32 controls. (2) From the Hospital of Sant Pau (Barcelona), we included n = 33 aMCI patients, n = 17 AD patients, and n = 50 controls. RESULTS: CSF NLK levels were similar in CAA patients and controls (p = 0.95). However, we found an elevated CSF concentration of NLK in aMCI (p < 0.0001) and AD patients (p < 0.0001) compared to controls in both samples sets. In addition, we found a correlation of CSF NLK with CSF YKL-40 (age-adjusted-spearman-rank-coefficient = 0.82, p < 0.0001) in aMCI/AD patients, a well-known glial marker of neuro-inflammation. CONCLUSIONS: We found that CSF NLK levels are elevated in aMCI and AD patients compared to controls, but are not increased in CAA patients. CSF NLK levels may be related to an increased neuroinflammatory state in early stages of AD, given its association with YKL-40.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Alzheimer Disease/complications , Amyloid beta-Peptides , Biomarkers , Cerebral Amyloid Angiopathy/complications , Glucose-6-Phosphate Isomerase , Humans , Nerve Growth Factors , Protein Serine-Threonine Kinases
15.
Stroke ; 49(4): 884-890, 2018 04.
Article in English | MEDLINE | ID: mdl-29540613

ABSTRACT

BACKGROUND AND PURPOSE: Cerebral small vessel disease (SVD) is a frequent pathology in aging and contributor to the development of dementia. Plasma Aß (amyloid ß) levels may be useful as early biomarker, but the role of plasma Aß in SVD remains to be elucidated. We investigated the association of plasma Aß levels with severity and progression of SVD markers. METHODS: We studied 487 participants from the RUN DMC study (Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Imaging Cohort) of whom 258 participants underwent 3 MRI assessments during 9 years. We determined baseline plasma Aß38, Aß40, and Aß42 levels using ELISAs. We longitudinally assessed volume of white matter hyperintensities semiautomatically and manually rated lacunes and microbleeds. We analyzed associations between plasma Aß and SVD markers by ANCOVA adjusted for age, sex, and hypertension. RESULTS: Cross-sectionally, plasma Aß40 levels were elevated in participants with microbleeds (mean, 205.4 versus 186.4 pg/mL; P<0.01) and lacunes (mean, 194.8 versus 181.2 pg/mL; P<0.05). Both Aß38 and Aß40 were elevated in participants with severe white matter hyperintensities (Aß38, 25.3 versus 22.7 pg/mL; P<0.01; Aß40, 201.8 versus 183.3 pg/mL; P<0.05). Longitudinally, plasma Aß40 levels were elevated in participants with white matter hyperintensity progression (mean, 194.6 versus 182.9 pg/mL; P<0.05). Both Aß38 and Aß40 were elevated in participants with incident lacunes (Aß38, 24.5 versus 22.5 pg/mL; P<0.05; Aß40, 194.9 versus 181.2 pg/mL; P<0.01) and Aß42 in participants with incident microbleeds (62.8 versus 60.4 pg/mL; P<0.05). CONCLUSIONS: Plasma Aß levels are associated with both presence and progression of SVD markers, suggesting that Aß pathology might contribute to the development and progression of SVD. Plasma Aß levels might thereby serve as inexpensive and noninvasive measure for identifying individuals with increased risk for progression of SVD.


Subject(s)
Amyloid beta-Peptides/blood , Cerebral Small Vessel Diseases/blood , Peptide Fragments/blood , Aged , Alcohol Drinking/epidemiology , Cerebral Hemorrhage/blood , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/epidemiology , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/epidemiology , Diabetes Mellitus/epidemiology , Disease Progression , Female , Humans , Hypercholesterolemia/epidemiology , Hypertension/epidemiology , Magnetic Resonance Imaging , Male , Middle Aged , Netherlands/epidemiology , Prognosis , Severity of Illness Index , Smoking/epidemiology , Stroke, Lacunar/blood , Stroke, Lacunar/diagnostic imaging , Stroke, Lacunar/epidemiology , White Matter/diagnostic imaging
16.
Thyroid ; 24(8): 1251-5, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24754736

ABSTRACT

BACKGROUND: Tyrosine kinase inhibitors (TKIs) have achieved remarkable clinical results in medullary thyroid carcinoma (MTC) patients. However, the considerable variability in patient response to treatment with TKIs remains largely unexplained. There is evidence that it could be due, at least in part, to alterations in genes associated with the disease via their effect on the expression of TKI targets. The objective of this study was to evaluate the influence of RAS mutations on the expression levels in MTC tumors of eight key TKI target proteins. METHODS: We assessed by immunohistochemistry the expression of EGFR, KIT, MET, PDGFRB, VEGF, VEGFR1, VEGFR2, and VEGFR3 in a series of 84 primary MTC tumors that had previously been molecularly characterized, including 14 RAS-positive, 18 RET(M918T)-positive, and 24 RET(C634)-positive tumors, as well as 15 wild-type tumors with no mutations in the RET or RAS genes. RESULTS: In contrast to RET-positive tumors, RAS-positive tumors expressed neither PDGFRB nor MET (p=0.0060 and 0.047, respectively). Similarly, fewer RAS-positive than RET-related tumors expressed VEGFR3 (p=0.00062). Finally, wild-type tumors expressed VEGF more often than both RAS- and RET-positive tumors (p=0.0082 and 0.011, respectively). CONCLUSIONS: This is the first study identifying that the expression of TKI targets differs according to the presence of RAS mutations in MTC. This information could potentially be used to select the most beneficial TKI treatment for these patients.


Subject(s)
Receptor, Platelet-Derived Growth Factor beta/metabolism , Thyroid Neoplasms/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism , ras Proteins/genetics , Carcinoma, Neuroendocrine , DNA Mutational Analysis , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Mutation , Proto-Oncogene Proteins c-ret/metabolism , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...