Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Clin Pharmacol Ther ; 113(2): 226-245, 2023 02.
Article in English | MEDLINE | ID: mdl-35388453

ABSTRACT

This review presents a European Federation of Pharmaceutical Industries and Association/PreClinical Development Expert Group (EFPIA-PDEG) topic group consensus on a data-driven approach to harmonized contraception recommendations for clinical trial protocols and product labeling. There is no international agreement in pharmaceutical clinical trial protocols or product labeling on when/if female and/or male contraception is warranted and for how long after the last dose. This absence of consensus has resulted in different recommendations among regions. For most pharmaceuticals, contraception recommendations are generally based exclusively on nonclinical data and/or mechanism. For clinical trials, contraception is the default position and is maintained for women throughout clinical development, whereas appropriate information can justify removing male contraception. Conversely, contraception is only recommended in product labeling when warranted. A base case rationale is proposed for whether or not female and/or male contraception is/are warranted, using available genotoxicity and developmental toxicity data. Contraception is generally warranted for both male and female subjects treated with mutagenic pharmaceuticals. We propose as a starting point that contraception is not typically warranted when the margin is 10-fold or greater between clinical exposure at the maximum recommended human dose and exposure at the no observed adverse effect level (NOAEL) for purely aneugenic pharmaceuticals and for pharmaceuticals that induce fetal malformations or embryo-fetal lethality. Other factors are discussed, including contraception methods, pregnancy testing, drug clearance, options for managing the absence of a developmental toxicity NOAEL, drug-drug interactions, radiopharmaceuticals, and other drug modalities. Overall, we present a data-driven rationale that can serve as a basis for consistent contraception recommendations in clinical trials and in product labeling across regions.


Subject(s)
Contraception , Drug Industry , Pregnancy , Humans , Male , Female , Contraception/adverse effects , No-Observed-Adverse-Effect Level , Consensus , Pharmaceutical Preparations
2.
EJNMMI Res ; 12(1): 71, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36346513

ABSTRACT

BACKGROUND: Antiepileptic drugs, levetiracetam (LEV) and brivaracetam (BRV), bind to synaptic vesicle glycoprotein 2A (SV2A). In their anti-seizure activity, speed of brain entry may be an important factor. BRV showed faster entry into the human and non-human primate brain, based on more rapid displacement of SV2A tracer 11C-UCB-J. To extract additional information from previous human studies, we developed a nonlinear model that accounted for drug entry into the brain and binding to SV2A using brain 11C-UCB-J positron emission tomography (PET) data and the time-varying plasma drug concentration, to assess the kinetic parameter K1 (brain entry rate) of the drugs. METHOD: Displacement (LEV or BRV p.i. 60 min post-tracer injection) and post-dose scans were conducted in five healthy subjects. Blood samples were collected for measurement of drug concentration and the tracer arterial input function. Fitting of nonlinear differential equations was applied simultaneously to time-activity curves (TACs) from displacement and post-dose scans to estimate 5 parameters: K1 (drug), K1(11C-UCB-J, displacement), K1(11C-UCB-J, post-dose), free fraction of 11C-UCB-J in brain (fND(11C-UCB-J)), and distribution volume of 11C-UCB-J (VT(UCB-J)). Other parameters (KD(drug), KD(11C-UCB-J), fP(drug), fP(11C-UCB-J, displacement), fP(11C-UCB-J, post-dose), fND(drug), koff(drug), koff(11C-UCB-J)) were fixed to literature or measured values. RESULTS: The proposed model described well the TACs in all subjects; however, estimates of drug K1 were unstable in comparison with 11C-UCB-J K1 estimation. To provide a conservative estimate of the relative speed of brain entry for BRV vs. LEV, we determined a lower bound on the ratio BRV K1/LEV K1, by finding the lowest BRV K1 or highest LEV K1 that were statistically consistent with the data. Specifically, we used the F test to compare the residual sum of squares with fixed BRV K1 to that with floating BRV K1 to obtain the lowest possible BRV K1; the same analysis was performed to find the highest LEV K1. The lower bound of the ratio BRV K1/LEV K1 was ~ 7. CONCLUSIONS: Under appropriate conditions, this advanced nonlinear model can directly estimate entry rates of drugs into tissue by analysis of PET TACs. Using a conservative statistical cutoff, BRV enters the brain at least sevenfold faster than LEV.

3.
J Pharmacol Toxicol Methods ; 105: 106919, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33011055

ABSTRACT

Clinical development of compounds that carry a convulsion liability is typically limited by safety margins based on the most sensitive nonclinical species. To better understand differences in sensitivity to drug-induced convulsion of commonly used preclinical species, a survey was distributed amongst pharmaceutical companies through an IQ consortium (International Consortium for Innovation and Quality in Pharmaceutical Development) resulting in convulsion-related data on 80 unique compounds from 11 companies. The lowest free drug plasma concentration at which convulsions were observed and the no observed effect level for convulsions were compared between species to determine their relative sensitivity. Additionally, data were collected on other endpoints including use of electroencephalography, premonitory signs, convulsion type, the reason why development was stopped, and the highest development phase reached. The key outcomes were: (1) the dog was most often determined to be the most sensitive species by both non-exposure and exposure-based analyses, (2) there was not a clear sensitivity ranking of other species (NHP, rat and mouse), (3) CNS symptoms were frequently present at exposures that were not associated with convulsions, but no single reliable premonitory indicator of convulsion was identified, and (4) the lack of convulsions in the compounds that were tested in humans in this dataset may suggest that convulsion liability is well mitigated via current drug development strategies.


Subject(s)
Drug-Related Side Effects and Adverse Reactions/etiology , Pharmaceutical Preparations/administration & dosage , Seizures/chemically induced , Animals , Drug Development/methods , Drug Evaluation, Preclinical/methods , Electroencephalography/methods , Humans , Mice , Rats , Sensitivity and Specificity
4.
J Pharmacol Toxicol Methods ; 103: 106683, 2020.
Article in English | MEDLINE | ID: mdl-32105757

ABSTRACT

Clinical development of compounds that carry a convulsion liability is typically limited by safety margins based on the most sensitive nonclinical species. To better understand differences in sensitivity to drug-induced convulsion of commonly used nonclinical species, a survey was distributed amongst pharmaceutical companies through an IQ consortium (International Consortium for Innovation and Quality in Pharmaceutical Development) resulting in convulsion-related data on 80 unique compounds from 11 companies. The lowest free drug plasma concentration at which convulsions were observed and the no observed effect level for convulsions were compared between species to determine their relative sensitivity. Additionally, data were collected on other endpoints including use of electroencephalography, premonitory signs, convulsion type, the reason why development was stopped, and the highest development phase reached. The key outcomes were: (1) the dog was most often determined to be the most sensitive species by both non-exposure and exposure-based analyses, (2) there was not a clear sensitivity ranking of other species (NHP, rat and mouse), (3) CNS symptoms were frequently present at exposures that were not associated with convulsions, but no single reliable premonitory indicator of convulsion was identified, and (4) the lack of convulsions when compounds were tested in humans in this dataset may suggest that convulsion liability is well mitigated via current drug development strategies.


Subject(s)
Drug Evaluation, Preclinical/methods , Seizures/chemically induced , Animals , Dogs , Drug Development , Electroencephalography , Haplorhini , Humans , Mice , Rats , Species Specificity , Surveys and Questionnaires
5.
Epilepsia ; 60(5): 958-967, 2019 05.
Article in English | MEDLINE | ID: mdl-30924924

ABSTRACT

OBJECTIVE: Brivaracetam (BRV) and levetiracetam (LEV) are antiepileptic drugs that bind synaptic vesicle glycoprotein 2A (SV2A). In vitro and in vivo animal studies suggest faster brain penetration and SV2A occupancy (SO) after dosing with BRV than LEV. We evaluated human brain penetration and SO time course of BRV and LEV at therapeutically relevant doses using the SV2A positron emission tomography (PET) tracer 11 C-UCB-J (EP0074; NCT02602860). METHODS: Healthy volunteers were recruited into three cohorts. Cohort 1 (n = 4) was examined with PET at baseline and during displacement after intravenous BRV (100 mg) or LEV (1500 mg). Cohort 2 (n = 5) was studied during displacement and 4 hours postdose (BRV 50-200 mg or LEV 1500 mg). Cohort 3 (n = 4) was examined at baseline and steady state after 4 days of twice-daily oral dosing of BRV (50-100 mg) and 4 hours postdose of LEV (250-600 mg). Half-time of 11 C-UCB-J signal change was computed from displacement measurements. Half-saturation concentrations (IC50 ) were determined from calculated SO. RESULTS: Observed tracer displacement half-times were 18 ± 6 minutes for BRV (100 mg, n = 4), 9.7 and 10.1 minutes for BRV (200 mg, n = 2), and 28 ± 6 minutes for LEV (1500 mg, n = 6). Estimated corrected half-times were 8 minutes shorter. The SO was 66%-70% for 100 mg intravenous BRV, 84%-85% for 200 mg intravenous BRV, and 78%-84% for intravenous 1500 mg LEV. The IC50 of BRV (0.46 µg/mL) was 8.7-fold lower than of LEV (4.02 µg/mL). BRV data fitted a single SO versus plasma concentration relationship. Steady state SO for 100 mg BRV was 86%-87% (peak) and 76%-82% (trough). SIGNIFICANCE: BRV achieves high SO more rapidly than LEV when intravenously administered at therapeutic doses. Thus, BRV may have utility in treating acute seizures; further clinical studies are needed for confirmation.


Subject(s)
Anticonvulsants/pharmacokinetics , Levetiracetam/pharmacokinetics , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Neuroimaging/methods , Positron-Emission Tomography , Pyrrolidinones/pharmacokinetics , Administration, Oral , Anticonvulsants/administration & dosage , Anticonvulsants/blood , Anticonvulsants/metabolism , Carbon Radioisotopes , Female , Healthy Volunteers , Humans , Inhibitory Concentration 50 , Injections, Intravenous , Levetiracetam/administration & dosage , Levetiracetam/blood , Levetiracetam/metabolism , Magnetic Resonance Imaging , Male , Protein Binding , Pyrrolidinones/administration & dosage , Pyrrolidinones/blood , Pyrrolidinones/metabolism
6.
Epilepsia ; 57(4): 538-48, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26920914

ABSTRACT

Despite availability of effective antiepileptic drugs (AEDs), many patients with epilepsy continue to experience refractory seizures and adverse events. Achievement of better seizure control and fewer side effects is key to improving quality of life. This review describes the rationale for the discovery and preclinical profile of brivaracetam (BRV), currently under regulatory review as adjunctive therapy for adults with partial-onset seizures. The discovery of BRV was triggered by the novel mechanism of action and atypical properties of levetiracetam (LEV) in preclinical seizure and epilepsy models. LEV is associated with several mechanisms that may contribute to its antiepileptic properties and adverse effect profile. Early findings observed a moderate affinity for a unique brain-specific LEV binding site (LBS) that correlated with anticonvulsant effects in animal models of epilepsy. This provided a promising molecular target and rationale for identifying selective, high-affinity ligands for LBS with potential for improved antiepileptic properties. The later discovery that synaptic vesicle protein 2A (SV2A) was the molecular correlate of LBS confirmed the novelty of the target. A drug discovery program resulted in the identification of anticonvulsants, comprising two distinct families of high-affinity SV2A ligands possessing different pharmacologic properties. Among these, BRV differed significantly from LEV by its selective, high affinity and differential interaction with SV2A as well as a higher lipophilicity, correlating with more potent and complete seizure suppression, as well as a more rapid brain penetration in preclinical models. Initial studies in animal models also revealed BRV had a greater antiepileptogenic potential than LEV. These properties of BRV highlight its promising potential as an AED that might provide broad-spectrum efficacy, associated with a promising tolerability profile and a fast onset of action. BRV represents the first selective SV2A ligand for epilepsy treatment and may add a significant contribution to the existing armamentarium of AEDs.


Subject(s)
Anticonvulsants/metabolism , Drug Discovery/trends , Epilepsy/metabolism , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Pyrrolidinones/metabolism , Animals , Anticonvulsants/therapeutic use , Dose-Response Relationship, Drug , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/trends , Epilepsy/drug therapy , Humans , Ligands , Pyrrolidinones/therapeutic use , Treatment Outcome
7.
Epilepsia ; 57(2): 201-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26663401

ABSTRACT

OBJECTIVE: Rapid distribution to the brain is a prerequisite for antiepileptic drugs used for treatment of acute seizures. The preclinical studies described here investigated the high-affinity synaptic vesicle glycoprotein 2A (SV2A) antiepileptic drug brivara-cetam (BRV) for its rate of brain penetration and its onset of action. BRV was compared with levetiracetam (LEV). METHODS: In vitro permeation studies were performed using Caco-2 cells. Plasma and brain levels were measured over time after single oral dosing to audiogenic mice and were correlated with anticonvulsant activity. Tissue distribution was investigated after single dosing to rat (BRV and LEV) and dog (LEV only). Positron emission tomography (PET) displacement studies were performed in rhesus monkeys using the SV2A PET tracer [11C]UCB-J. The time course of PET tracer displacement was measured following single intravenous (IV) dosing with LEV or BRV. Rodent distribution data and physiologically based pharmacokinetic (PBPK) modeling were used to compute blood-brain barrier permeability (permeability surface area product, PS) values and then predict brain kinetics in man. RESULTS: In rodents, BRV consistently showed a faster entry into the brain than LEV; this correlated with a faster onset of action against seizures in audiogenic susceptible mice. The higher permeability of BRV was also demonstrated in human cells in vitro. PBPK modeling predicted that, following IV dosing to human subjects, BRV might distribute to the brain within a few minutes compared with approximately 1 h for LEV (PS of 0.315 and 0.015 ml/min/g for BRV and LEV, respectively). These data were supported by a nonhuman primate PET study showing faster SV2A occupancy by BRV compared with LEV. SIGNIFICANCE: These preclinical data demonstrate that BRV has rapid brain entry and fast brain SV2A occupancy, consistent with the fast onset of action in the audiogenic seizure mice assay. The potential benefit of BRV for treatment of acute seizures remains to be confirmed in clinical studies.


Subject(s)
Anticonvulsants/pharmacokinetics , Blood-Brain Barrier/metabolism , Brain/metabolism , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Pyrrolidinones/pharmacokinetics , Animals , Brain/diagnostic imaging , Caco-2 Cells , Dogs , Epilepsy, Reflex , Humans , In Vitro Techniques , Levetiracetam , Macaca mulatta , Mice , Molecular Targeted Therapy , Permeability , Piracetam/analogs & derivatives , Piracetam/pharmacokinetics , Positron-Emission Tomography , Rats
8.
Toxicol Sci ; 141(2): 353-64, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24973095

ABSTRACT

A new antiepileptic synaptic vesicle 2a (SV2a) ligand drug candidate was tested in 4-week oral toxicity studies in rat and dog. Brown pigment inclusions were found in the liver of high-dose dogs. The morphology of the deposits and the accompanying liver changes (increased plasma liver enzymes, increased total hepatic porphyrin level, decreased liver ferrochelatase activity, combined induction, and inactivation of cytochrome P-450 CYP2B11) suggested disruption of the heme biosynthetic cascade. None of these changes was seen in rat although this species was exposed to higher parent drug levels. Toxicokinetic analysis and in vitro metabolism assays in hepatocytes showed that dog is more prone to oxidize the drug candidate than rat. Mass spectrometry analysis of liver samples from treated dogs revealed an N-alkylprotoporphyrin adduct. The elucidation of its chemical structure suggested that the drug transforms into a reactive metabolite which is structurally related to a known reference porphyrogenic agent allylisopropylacetamide. That particular metabolite, primarily produced in dog but neither in rat nor in human, has the potential to alkylate the prosthetic heme of CYP. Overall, the data suggested that the drug candidate should not be porphyrogenic in human. This case study further exemplifies the species variability in the susceptibility to drug-induced porphyria.


Subject(s)
Anticonvulsants/pharmacokinetics , Anticonvulsants/toxicity , Chemical and Drug Induced Liver Injury/etiology , Liver/drug effects , Porphyrias, Hepatic/chemically induced , Administration, Oral , Animals , Anticonvulsants/administration & dosage , Anticonvulsants/blood , Aryl Hydrocarbon Hydroxylases/metabolism , Biotransformation , Cells, Cultured , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/diagnosis , Cytochrome P450 Family 2 , Dogs , Female , Ferrochelatase/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Isoenzymes , Liver/enzymology , Liver/pathology , Male , Molecular Structure , Oxidation-Reduction , Porphyrias, Hepatic/blood , Porphyrias, Hepatic/diagnosis , Porphyrins/metabolism , Rats , Rats, Wistar , Risk Assessment , Species Specificity , Steroid Hydroxylases/metabolism
9.
Regul Toxicol Pharmacol ; 67(1): 27-38, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23602904

ABSTRACT

Short term toxicity studies are conducted in animals to provide information on major adverse effects typically at the maximum tolerated dose (MTD). Such studies are important from a scientific and ethical perspective as they are used to make decisions on progression of potential candidate drugs, and to set dose levels for subsequent regulatory studies. The MTD is usually determined by parameters such as clinical signs, reductions in body weight and food consumption. However, these assessments are often subjective and there are no published criteria to guide the selection of an appropriate MTD. Even where an objective measurement exists, such as body weight loss (BWL), there is no agreement on what level constitutes an MTD. A global initiative including 15 companies, led by the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), has shared data on BWL in toxicity studies to assess the impact on the animal and the study outcome. Information on 151 studies has been used to develop an alert/warning system for BWL in short term toxicity studies. The data analysis supports BWL limits for short term dosing (up to 7days) of 10% for rat and dog and 6% for non-human primates (NHPs).


Subject(s)
Body Weight/drug effects , Drug Industry/methods , Toxicity Tests, Acute/methods , Weight Loss/drug effects , Animals , Dogs , Drug-Related Side Effects and Adverse Reactions , Humans , Maximum Tolerated Dose , Primates , Rats
10.
Regul Toxicol Pharmacol ; 50(3): 345-52, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18295384

ABSTRACT

Regulatory guidelines indicate acute toxicity studies in animals are considered necessary for pharmaceuticals intended for human use. This is the only study type where lethality is mentioned as an endpoint. The studies are carried out, usually in rodents, to support marketing of new drugs and to identify the minimum lethal dose. A European initiative including 18 companies has undertaken an evidence-based review of acute toxicity studies and assessed the value of the data generated. Preclinical and clinical information was shared on 74 compounds. The analysis indicated acute toxicity data was not used to (i) terminate drugs from development (ii) support dose selection for repeat dose studies in animals or (iii) to set doses in the first clinical trials in humans. The conclusion of the working group is that acute toxicity studies are not needed prior to first clinical trials in humans. Instead, information can be obtained from other studies, which are performed at more relevant doses for humans and are already an integral part of drug development. The conclusions have been discussed and agreed with representatives of regulatory bodies from the US, Japan and Europe.


Subject(s)
Drug Industry/standards , Legislation, Drug/standards , Pharmaceutical Preparations/standards , Toxicity Tests/standards , Animals , Clinical Trials as Topic , Computer Communication Networks , Data Collection , Dose-Response Relationship, Drug , Drug Overdose , European Union , Humans , Research Design
SELECTION OF CITATIONS
SEARCH DETAIL
...