Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Biochem J ; 475(3): 677-690, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29335301

ABSTRACT

The splicing of mRNA is dependent on serine-arginine (SR) proteins that are mobilized from membrane-free, nuclear speckles to the nucleoplasm by the Cdc2-like kinases (CLKs). This movement is critical for SR protein-dependent assembly of the macromolecular spliceosome. Although CLK1 facilitates such trafficking through the phosphorylation of serine-proline dipeptides in the prototype SR protein SRSF1, an unrelated enzyme known as SR protein kinase 1 (SRPK1) performs the same function but does not efficiently modify these dipeptides in SRSF1. We now show that the ability of SRPK1 to mobilize SRSF1 from speckles to the nucleoplasm is dependent on active CLK1. Diffusion from speckles is promoted by the formation of an SRPK1-CLK1 complex that facilitates dissociation of SRSF1 from CLK1 and enhances the phosphorylation of several serine-proline dipeptides in this SR protein. Down-regulation of either kinase blocks EGF-stimulated mobilization of nuclear SRSF1. These findings establish a signaling pathway that connects SRPKs to SR protein activation through the associated CLK family of kinases.


Subject(s)
Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , RNA Splicing/genetics , Serine-Arginine Splicing Factors/genetics , CDC2-CDC28 Kinases/chemistry , CDC2-CDC28 Kinases/genetics , Epidermal Growth Factor/metabolism , HeLa Cells , Humans , RNA, Messenger/genetics , Signal Transduction/genetics , Spliceosomes/genetics
2.
PLoS Biol ; 14(11): e2000127, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27902690

ABSTRACT

Eukaryotic protein kinases regulate most cellular functions by phosphorylating targeted protein substrates through a highly conserved catalytic core. In the active state, the catalytic core oscillates between open, intermediate, and closed conformations. Currently, the intramolecular interactions that regulate the active state mechanics are not well understood. Here, using cAMP-dependent protein kinase as a representative model coupled with biochemical, biophysical, and computational techniques, we define a set of highly conserved electrostatic and hydrophobic interactions working harmoniously to regulate these mechanics. These include the previously identified salt bridge between a lysine from the ß3-strand and a glutamate from the αC-helix as well as an electrostatic interaction between the phosphorylated activation loop and αC-helix and an ensemble of hydrophobic residues of the Regulatory spine and Shell. Moreover, for over three decades it was thought that the highly conserved ß3-lysine was essential for phosphoryl transfer, but our findings show that the ß3-lysine is not required for phosphoryl transfer but is essential for the active state mechanics.


Subject(s)
Protein Kinases/metabolism , Catalysis , Hydrophobic and Hydrophilic Interactions , Mutation , Static Electricity
3.
Mol Cell ; 63(2): 218-228, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27397683

ABSTRACT

Phosphorylation has been generally thought to activate the SR family of splicing factors for efficient splice-site recognition, but this idea is incompatible with an early observation that overexpression of an SR protein kinase, such as the CDC2-like kinase 1 (CLK1), weakens splice-site selection. Here, we report that CLK1 binds SR proteins but lacks the mechanism to release phosphorylated SR proteins, thus functionally inactivating the splicing factors. Interestingly, CLK1 overcomes this dilemma through a symbiotic relationship with the serine-arginine protein kinase 1 (SRPK1). We show that SRPK1 interacts with an RS-like domain in the N terminus of CLK1 to facilitate the release of phosphorylated SR proteins, which then promotes efficient splice-site recognition and subsequent spliceosome assembly. These findings reveal an unprecedented signaling mechanism by which two protein kinases fulfill separate catalytic features that are normally encoded in single kinases to institute phosphorylation control of pre-mRNA splicing in the nucleus.


Subject(s)
Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , RNA Precursors/metabolism , RNA Splicing , RNA, Messenger/metabolism , Spliceosomes/enzymology , Catalysis , HeLa Cells , Humans , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , RNA Interference , RNA Precursors/genetics , RNA, Messenger/genetics , Ribonucleoprotein, U1 Small Nuclear/metabolism , Spliceosomes/genetics , Time Factors , Transfection , beta-Globins/genetics , beta-Globins/metabolism
4.
Eur J Pharmacol ; 789: 1-7, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27373851

ABSTRACT

ß-adrenoceptor antagonists are commonly used in ischaemic heart disease (IHD) patients, yet may impair signalling and efficacy of 'cardioprotective' interventions. We assessed effects of chronic ß1-adrenoceptor antagonism on myocardial resistance to ischaemia-reperfusion (IR) injury and the ability of cardioprotective interventions [classic ischaemic preconditioning (IPC); novel sustained ligand-activated preconditioning (SLP)] to reduce IR injury in murine hearts. Young male C57Bl/6 mice were untreated or received atenolol (0.5g/l in drinking water) for 4 weeks. Subsequently, two cardioprotective stimuli were evaluated: morphine pellets implanted (to induce SLP, controls received placebo) 5 days prior to Langendorff heart perfusion, and IPC in perfused hearts (3×1.5min ischaemia/2min reperfusion). Atenolol significantly reduced in vivo heart rate. Untreated control hearts exhibited substantial left ventricular dysfunction (~50% pressure development recovery, ~20mmHg diastolic pressure rise) with significant release of lactate dehydrogenase (LDH, tissue injury indicator) after 25min ischaemia/45min reperfusion. Contractile dysfunction and elevated LDH were reduced >50% with IPC and SLP. While atenolol treatment did not modify baseline contractile function, post-ischaemic function was significantly depressed compared to untreated hearts. Atenolol pre-treatment abolished beneficial effects of IPC, whereas SLP protection was preserved. These data indicate that chronic ß1-adrenoceptor blockade can exert negative effects on functional IR tolerance and negate conventional IPC (implicating ß1-adrenoceptors in IR injury and IPC signalling). However, novel morphine-induced SLP is resistant to inhibition by ß1-adrenoceptor antagonism.


Subject(s)
Adrenergic beta-1 Receptor Antagonists/pharmacology , Ischemic Preconditioning, Myocardial , Myocardial Reperfusion Injury/physiopathology , Myocardial Reperfusion Injury/therapy , Myocardium/metabolism , Receptors, Adrenergic, beta-1/metabolism , Animals , Dose-Response Relationship, Drug , Heart Rate/drug effects , Isoproterenol/pharmacology , L-Lactate Dehydrogenase/metabolism , Male , Mice , Mice, Inbred C57BL , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/metabolism
5.
J Mol Biol ; 428(11): 2430-2445, 2016 06 05.
Article in English | MEDLINE | ID: mdl-27091468

ABSTRACT

Multisite phosphorylation is required for the biological function of serine-arginine (SR) proteins, a family of essential regulators of mRNA splicing. These modifications are catalyzed by serine-arginine protein kinases (SRPKs) that phosphorylate numerous serines in arginine-serine-rich (RS) domains of SR proteins using a directional, C-to-N-terminal mechanism. The present studies explore how SRPKs govern this highly biased phosphorylation reaction and investigate biological roles of the observed directional phosphorylation mechanism. Using NMR spectroscopy with two separately expressed domains of SRSF1, we showed that several residues in the RNA-binding motif 2 interact with the N-terminal region of the RS domain (RS1). These contacts provide a structural framework that balances the activities of SRPK1 and the protein phosphatase PP1, thereby regulating the phosphoryl content of the RS domain. Disruption of the implicated intramolecular RNA-binding motif 2-RS domain interaction impairs both the directional phosphorylation mechanism and the nuclear translocation of SRSF1 demonstrating that the intrinsic phosphorylation bias is obligatory for SR protein biological function.


Subject(s)
Active Transport, Cell Nucleus/physiology , Phosphorylation/physiology , RNA Recognition Motif/physiology , RNA/metabolism , Serine-Arginine Splicing Factors/metabolism , Amino Acid Sequence , Arginine/metabolism , Humans , Nuclear Proteins/metabolism , Protein Binding/genetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , RNA Splicing/genetics , RNA-Binding Proteins/metabolism , Serine/metabolism
6.
FEBS J ; 283(11): 2132-48, 2016 06.
Article in English | MEDLINE | ID: mdl-27028580

ABSTRACT

UNLABELLED: The A-kinase anchoring protein (AKAP) smAKAP has three extraordinary features; it is very small, it is anchored directly to membranes by acyl motifs, and it interacts almost exclusively with the type I regulatory subunits (RI) of cAMP-dependent kinase (PKA). Here, we determined the crystal structure of smAKAP's A-kinase binding domain (smAKAP-AKB) in complex with the dimerization/docking (D/D) domain of RIα which reveals an extended hydrophobic interface with unique interaction pockets that drive smAKAP's high specificity for RI subunits. We also identify a conserved PKA phosphorylation site at Ser66 in the AKB domain which we predict would cause steric clashes and disrupt binding. This correlates with in vivo colocalization and fluorescence polarization studies, where Ser66 AKB phosphorylation ablates RI binding. Hydrogen/deuterium exchange studies confirm that the AKB helix is accessible and dynamic. Furthermore, full-length smAKAP as well as the unbound AKB is predicted to contain a break at the phosphorylation site, and circular dichroism measurements confirm that the AKB domain loses its helicity following phosphorylation. As the active site of PKA's catalytic subunit does not accommodate α-helices, we predict that the inherent flexibility of the AKB domain enables its phosphorylation by PKA. This represents a novel mechanism, whereby activation of anchored PKA can terminate its binding to smAKAP affecting the regulation of localized cAMP signaling events. DATABASE: Structural data are available in the PDB under accession number 5HVZ.


Subject(s)
A Kinase Anchor Proteins/chemistry , Cyclic AMP-Dependent Protein Kinases/chemistry , Cyclic AMP/chemistry , Protein Subunits/chemistry , A Kinase Anchor Proteins/metabolism , Amino Acid Sequence , Animals , Catalytic Domain , Cattle , Circular Dichroism , Crystallography, X-Ray , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Phosphorylation , Protein Binding , Protein Subunits/metabolism
7.
Biochem J ; 472(3): 329-38, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26443864

ABSTRACT

Phosphorylation-dependent cell communication requires enzymes that specifically recognize key proteins in a sea of similar, competing substrates. The protein kinases achieve this goal by utilizing docking grooves in the kinase domain or heterologous protein adaptors to reduce 'off pathway' targeting. We now provide evidence that the nuclear protein kinase CLK1 (cell division cycle2-like kinase 1) important for splicing regulation departs from these classic paradigms by using a novel self-association mechanism. The disordered N-terminus of CLK1 induces oligomerization, a necessary event for targeting its physiological substrates the SR protein (splicing factor containing a C-terminal RS domain) family of splicing factors. Increasing the CLK1 concentration enhances phosphorylation of the splicing regulator SRSF1 (SR protein splicing factor 1) compared with the general substrate myelin basic protein (MBP). In contrast, removal of the N-terminus or dilution of CLK1 induces monomer formation and reverses this specificity. CLK1 self-association also occurs in the nucleus, is induced by the N-terminus and is important for localization of the kinase in sub-nuclear compartments known as speckles. These findings present a new picture of substrate recognition for a protein kinase in which an intrinsically disordered domain is used to capture physiological targets with similar disordered domains in a large oligomeric complex while discriminating against non-physiological targets.


Subject(s)
Cell Nucleus/enzymology , Molecular Docking Simulation , Nuclear Proteins/chemistry , Protein Multimerization , Protein Serine-Threonine Kinases/chemistry , Protein-Tyrosine Kinases/chemistry , Humans , Myelin Basic Protein/chemistry , Myelin Basic Protein/genetics , Myelin Basic Protein/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphorylation/physiology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Serine-Arginine Splicing Factors/chemistry , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism
8.
Proc Natl Acad Sci U S A ; 112(41): 12681-6, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26417071

ABSTRACT

Cyclic AMP/protein kinase A (cAMP/PKA) and glucocorticoids promote the death of many cell types, including cells of hematopoietic origin. In wild-type (WT) S49 T-lymphoma cells, signaling by cAMP and glucocorticoids converges on the induction of the proapoptotic B-cell lymphoma-family protein Bim to produce mitochondria-dependent apoptosis. Kin(-), a clonal variant of WT S49 cells, lacks PKA catalytic (PKA-Cα) activity and is resistant to cAMP-mediated apoptosis. Using sorbitol density gradient fractionation, we show here that in kin(-) S49 cells PKA-Cα is not only depleted but the residual PKA-Cα mislocalizes to heavier cell fractions and is not phosphorylated at two conserved residues (Ser(338) or Thr(197)). In WT S49 cells, PKA-regulatory subunit I (RI) and Bim coimmunoprecipitate upon treatment with cAMP analogs and forskolin (which increases endogenous cAMP concentrations). By contrast, in kin(-) cells, expression of PKA-RIα and Bim is prominently decreased, and increases in cAMP do not increase Bim expression. Even so, kin(-) cells undergo apoptosis in response to treatment with the glucocorticoid dexamethasone (Dex). In WT cells, glucorticoid-mediated apoptosis involves an increase in Bim, but in kin(-) cells, Dex-promoted cell death appears to occur by a caspase 3-independent apoptosis-inducing factor pathway. Thus, although cAMP/PKA-Cα and PKA-R1α/Bim mediate apoptotic cell death in WT S49 cells, kin(-) cells resist this response because of lower levels of PKA-Cα and PKA-RIα subunits as well as Bim. The findings for Dex-promoted apoptosis imply that these lymphoma cells have adapted to selective pressure that promotes cell death by altering canonical signaling pathways.


Subject(s)
Apoptosis/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Dexamethasone/pharmacology , Lymphoma/drug therapy , Models, Biological , Animals , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11 , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , Colforsin/pharmacology , Cyclic AMP/analogs & derivatives , Cyclic AMP/pharmacology , Cyclic AMP-Dependent Protein Kinases/genetics , Humans , Lymphoma/enzymology , Lymphoma/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
9.
PLoS Biol ; 13(7): e1002192, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26158466

ABSTRACT

To provide tight spatiotemporal signaling control, the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) holoenzyme typically nucleates a macromolecular complex or a "PKA signalosome." Using the RIIß holoenzyme as a prototype, we show how autophosphorylation/dephosphorylation of the RIIß subunit, as well as cAMP and metal ions, contribute to the dynamics of PKA signaling. While we showed previously that the RIIß holoenzyme could undergo a single turnover autophosphorylation with adenosine triphosphate and magnesium (MgATP) and trap both products in the crystal lattice, we asked here whether calcium could trap an ATP:RIIß holoenzyme since the RIIß holoenzyme is located close to ion channels. The 2.8Å structure of an RIIßp2:C2:(Ca2ADP)2 holoenzyme, supported by biochemical and biophysical data, reveals a trapped single phosphorylation event similar to MgATP. Thus, calcium can mediate a single turnover event with either ATP or adenosine-5'-(ß,γ-imido)triphosphate (AMP-PNP), even though it cannot support steady-state catalysis efficiently. The holoenzyme serves as a "product trap" because of the slow off-rate of the pRIIß subunit, which is controlled by cAMP, not by phosphorylation of the inhibitor site. By quantitatively defining the RIIß signaling cycle, we show that release of pRIIß in the presence of cAMP is reduced by calcium, whereas autophosphorylation at the phosphorylation site (P-site) inhibits holoenzyme reassociation with the catalytic subunit. Adding a single phosphoryl group to the preformed RIIß holoenzyme thus creates a signaling cycle in which phosphatases become an essential partner. This previously unappreciated molecular mechanism is an integral part of PKA signaling for type II holoenzymes.


Subject(s)
Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit/metabolism , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Catalysis , Cyclic AMP/metabolism , Escherichia coli , HeLa Cells , Holoenzymes/metabolism , Humans , Magnesium/metabolism , Mice , NIH 3T3 Cells , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation , Rats
10.
J Biol Chem ; 290(28): 17269-81, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-26013829

ABSTRACT

Transformer 2ß1 (Tra2ß1) is a splicing effector protein composed of a core RNA recognition motif flanked by two arginine-serine-rich (RS) domains, RS1 and RS2. Although Tra2ß1-dependent splicing is regulated by phosphorylation, very little is known about how protein kinases phosphorylate these two RS domains. We now show that the serine-arginine protein kinase-1 (SRPK1) is a regulator of Tra2ß1 and promotes exon inclusion in the survival motor neuron gene 2 (SMN2). To understand how SRPK1 phosphorylates this splicing factor, we performed mass spectrometric and kinetic experiments. We found that SRPK1 specifically phosphorylates 21 serines in RS1, a process facilitated by a docking groove in the kinase domain. Although SRPK1 readily phosphorylates RS2 in a splice variant lacking the N-terminal RS domain (Tra2ß3), RS1 blocks phosphorylation of these serines in the full-length Tra2ß1. Thus, RS2 serves two new functions. First, RS2 positively regulates binding of the central RNA recognition motif to an exonic splicing enhancer sequence, a phenomenon reversed by SRPK1 phosphorylation on RS1. Second, RS2 enhances ligand exchange in the SRPK1 active site allowing highly efficient Tra2ß1 phosphorylation. These studies demonstrate that SRPK1 is a regulator of Tra2ß1 splicing function and that the individual RS domains engage in considerable cross-talk, assuming novel functions with regard to RNA binding, splicing, and SRPK1 catalysis.


Subject(s)
Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Binding Sites , Exons , HEK293 Cells , Humans , Kinetics , Mutagenesis, Site-Directed , Nerve Tissue Proteins/genetics , Phosphorylation , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/genetics , RNA/genetics , RNA/metabolism , RNA Splicing , RNA-Binding Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serine/chemistry , Serine-Arginine Splicing Factors , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism
11.
Biochem J ; 466(2): 311-22, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25529026

ABSTRACT

The alternative splicing of human genes is dependent on SR proteins, a family of essential splicing factors whose name derives from a signature C-terminal domain rich in arginine-serine dipeptide repeats (RS domains). Although the SRPKs (SR-specific protein kinases) phosphorylate these repeats, RS domains also contain prolines with flanking serines that are phosphorylated by a second family of protein kinases known as the CLKs (Cdc2-like kinases). The role of specific serine-proline phosphorylation within the RS domain has been difficult to assign since CLKs also phosphorylate arginine-serine dipeptides and, thus, display overlapping residue specificities with the SRPKs. In the present study, we address the effects of discrete serine-proline phosphorylation on the conformation and cellular function of the SR protein SRSF1 (SR protein splicing factor 1). Using chemical tagging and dephosphorylation experiments, we show that modification of serine-proline dipeptides broadly amplifies the conformational ensemble of SRSF1. The induction of these new structural forms triggers SRSF1 mobilization in the nucleus and alters its binding mechanism to an exonic splicing enhancer in precursor mRNA. These physical events correlate with changes in the alternative splicing of over 100 human genes based on a global splicing assay. Overall, these studies draw a direct causal relationship between a specific type of chemical modification in an SR protein and the regulation of alternative gene splicing programmes.


Subject(s)
Alternative Splicing , Nuclear Proteins/chemistry , Proline/chemistry , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , RNA Precursors/metabolism , RNA-Binding Proteins/chemistry , Amino Acid Sequence , Cell Nucleus/metabolism , Conserved Sequence , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Kinetics , Molecular Sequence Data , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphorylation , Proline/metabolism , Protein Conformation , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/genetics , Protein Transport , Protein-Tyrosine Kinases/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Serine/chemistry , Serine/metabolism , Serine-Arginine Splicing Factors , Substrate Specificity
12.
Biochem J ; 462(1): 143-52, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24869919

ABSTRACT

SR proteins are essential splicing factors that are regulated through multisite phosphorylation of their RS (arginine/serine-rich) domains by two major families of protein kinases. The SRPKs (SR-specific protein kinases) efficiently phosphorylate the arginine/serine dipeptides in the RS domain using a conserved docking groove in the kinase domain. In contrast, CLKs (Cdc2-like kinases) lack a docking groove and phosphorylate both arginine/serine and serine-proline dipeptides, modifications that generate a hyperphosphorylated state important for unique SR protein-dependent splicing activities. All CLKs contain long flexible N-terminal extensions (140-300 residues) that resemble the RS domains present in their substrate SR proteins. We showed that the N-terminus in CLK1 contacts both the kinase domain and the RS domain of the SR protein SRSF1 (SR protein splicing factor 1). This interaction not only is essential for facilitating hyperphosphorylation, but also induces co-operative binding of SRSF1 to RNA. The N-terminus of CLK1 enhances the total phosphoryl contents of a panel of physiological substrates including SRSF1, SRSF2, SRSF5 and Tra2ß1 (transformer 2ß1) by 2-3-fold. These findings suggest that CLK1-dependent hyperphosphorylation is the result of a general mechanism in which the N-terminus acts as a bridge connecting the kinase domain and the RS domain of the SR protein.


Subject(s)
Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , RNA Splicing , RNA-Binding Proteins/metabolism , Animals , Arginine/metabolism , Humans , Mice , Phosphorylation , Protein Structure, Tertiary , Serine/metabolism , Serine-Arginine Splicing Factors , Substrate Specificity
13.
Biochemistry ; 53(19): 3179-86, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24786636

ABSTRACT

X-ray structures of several ternary product complexes of the catalytic subunit of cAMP-dependent protein kinase (PKAc) have been determined with no bound metal ions and with Na(+) or K(+) coordinated at two metal-binding sites. The metal-free PKAc and the enzyme with alkali metals were able to facilitate the phosphoryl transfer reaction. In all studied complexes, the ATP and the substrate peptide (SP20) were modified into the products ADP and the phosphorylated peptide. The products of the phosphotransfer reaction were also found when ATP-γS, a nonhydrolyzable ATP analogue, reacted with SP20 in the PKAc active site containing no metals. Single turnover enzyme kinetics measurements utilizing (32)P-labeled ATP confirmed the phosphotransferase activity of the enzyme in the absence of metal ions and in the presence of alkali metals. In addition, the structure of the apo-PKAc binary complex with SP20 suggests that the sequence of binding events may become ordered in a metal-free environment, with SP20 binding first to prime the enzyme for subsequent ATP binding. Comparison of these structures reveals conformational and hydrogen bonding changes that might be important for the mechanism of catalysis.


Subject(s)
Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/chemistry , Peptides/chemistry , Animals , Catalytic Domain , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/genetics , Metals, Alkali/chemistry , Mice , Phosphorylation/physiology , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
14.
PLoS Biol ; 11(10): e1001680, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24143133

ABSTRACT

Eukaryotic protein kinases (EPKs) regulate numerous signaling processes by phosphorylating targeted substrates through the highly conserved catalytic domain. Our previous computational studies proposed a model stating that a properly assembled nonlinear motif termed the Regulatory (R) spine is essential for catalytic activity of EPKs. Here we define the required intramolecular interactions and biochemical properties of the R-spine and the newly identified "Shell" that surrounds the R-spine using site-directed mutagenesis and various in vitro phosphoryl transfer assays using cyclic AMP-dependent protein kinase as a representative of the entire kinome. Analysis of the 172 available Apo EPK structures in the protein data bank (PDB) revealed four unique structural conformations of the R-spine that correspond with catalytic inactivation of various EPKs. Elucidating the molecular entities required for the catalytic activation of EPKs and the identification of these inactive conformations opens new avenues for the design of efficient therapeutic EPK inhibitors.


Subject(s)
Eukaryota/enzymology , Protein Kinases/chemistry , Protein Kinases/metabolism , Amino Acid Motifs , Amino Acids/metabolism , Biocatalysis , Databases, Protein , Enzyme Activation , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Phosphorylation , Sequence Alignment , Structure-Activity Relationship
16.
Cell ; 153(2): 413-25, 2013 Apr 11.
Article in English | MEDLINE | ID: mdl-23582329

ABSTRACT

Here, we demonstrate that the fractalkine (FKN)/CX3CR1 system represents a regulatory mechanism for pancreatic islet ß cell function and insulin secretion. CX3CR1 knockout (KO) mice exhibited a marked defect in glucose and GLP1-stimulated insulin secretion, and this defect was also observed in vitro in isolated islets from CX3CR1 KO mice. In vivo administration of FKN improved glucose tolerance with an increase in insulin secretion. In vitro treatment of islets with FKN increased intracellular Ca(2+) and potentiated insulin secretion in both mouse and human islets. The KO islets exhibited reduced expression of a set of genes necessary for the fully functional, differentiated ß cell state, whereas treatment of wild-type (WT) islets with FKN led to increased expression of these genes. Lastly, expression of FKN in islets was decreased by aging and high-fat diet/obesity, suggesting that decreased FKN/CX3CR1 signaling could be a mechanism underlying ß cell dysfunction in type 2 diabetes.


Subject(s)
Insulin-Secreting Cells/metabolism , Insulin/metabolism , Receptors, Chemokine/metabolism , Signal Transduction , Adult , Aging , Animals , CX3C Chemokine Receptor 1 , Cadaver , Chemokine CX3CL1/administration & dosage , Chemokine CX3CL1/metabolism , Diet, High-Fat , Gene Expression , Glucose/metabolism , Humans , Hyperglycemia/metabolism , Insulin Secretion , Islets of Langerhans/cytology , Islets of Langerhans/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Receptors, Chemokine/genetics
17.
Biochim Biophys Acta ; 1834(7): 1271-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23535202

ABSTRACT

The first protein kinase structure, solved in 1991, revealed the fold that is shared by all members of the eukaryotic protein kinase superfamily and showed how the conserved sequence motifs cluster mostly around the active site. This structure of the PKA catalytic (C) subunit showed also how a single phosphate integrated the entire molecule. Since then the EPKs have become a major drug target, second only to the G-protein coupled receptors. Although PKA provided a mechanistic understanding of catalysis that continues to serve as a prototype for the family, by comparing many active and inactive kinases we subsequently discovered a hydrophobic spine architecture that is a characteristic feature of all active kinases. The ways in which the regulatory spine is dynamically assembled is the defining feature of each protein kinase. Protein kinases have thus evolved to be molecular switches, like the G-proteins, and unlike metabolic enzymes which have evolved to be efficient catalysis. PKA also shows how the dynamic tails surround the core and serve as essential regulatory elements. The phosphorylation sites in PKA, introduced both co- and post-translationally, are very stable. The resulting C-subunit is then packaged as an inhibited holoenzyme with cAMP-binding regulatory (R) subunits so that PKA activity is regulated exclusively by cAMP, not by the dynamic turnover of an activation loop phosphate. We could not understand activation and inhibition without seeing structures of R:C complexes; however, to appreciate the structural uniqueness of each R2:C2 holoenzyme required solving structures of tetrameric holoenzymes. It is these tetrameric holoenzymes that are localized to discrete sites in the cell, typically by A Kinase Anchoring Proteins where they create discrete foci for PKA signaling. Understanding these dynamic macromolecular complexes is the challenge that we now face. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).


Subject(s)
Cyclic AMP-Dependent Protein Kinases/chemistry , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Tertiary , Biocatalysis , Catalytic Domain , Cyclic AMP/chemistry , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Holoenzymes/chemistry , Holoenzymes/metabolism , Models, Molecular , Phosphorylation
18.
J Biol Chem ; 287(48): 40758-66, 2012 Nov 23.
Article in English | MEDLINE | ID: mdl-23045529

ABSTRACT

BACKGROUND: Negative feedback regulation of insulin signaling involves ubiquitin-dependent degradation of insulin receptor substrate 1 (IRS1). RESULTS: Cullin-RING E3 ubiquitin ligase 7 (CRL7) mediates the ubiquitination of IRS1 in hyperphosphorylated form. CONCLUSION: Multisite IRS1 phosphorylation triggers interactions with CRL7 for ubiquitin modification. SIGNIFICANCE: Insulin signaling is self-restrained when its downstream effector kinases are hyperactivated to trigger the negative feedback inhibition. Hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) and its effector kinase S6 kinase 1 (S6K1) is known to trigger multisite seryl phosphorylation of insulin receptor substrate 1 (IRS1), leading to its ubiquitination and degradation. This negative feedback inhibition functions to restrain PI3K activity and plays critical roles in the pathogenesis of cancer and type II diabetes. Recent work has implicated a role for cullin-RING E3 ubiquitin ligase 7 (CRL7) in targeting IRS1 for mTORC1/S6K1-dependent degradation. In the present study we have employed both cell-based degradation and reconstituted ubiquitination approaches to define molecular features associated with IRS1 critical for CRL7-mediated ubiquitination and degradation. We have mapped IRS1 degradation signal sequence to its N-terminal 574 amino acid residues, of which the integrity of Ser-307/Ser-312 and Ser-527, each constituting a S6K1 phosphorylation consensus site, was indispensible for supporting CRL7-forced degradation. In vitro, S6K1 was able to support the ubiquitination of bacterially expressed IRS1 N-terminal fragment by CRL7 but at low levels. In contrast, CRL7 supported efficient ubiquitination of IRS1 N-terminal fragment in hyperphosphorylated form, which was isolated from infected insect cells, suggesting requirement of additional phosphorylation by kinases yet to be identified. Finally, removal of IRS1 amino acids 1-260 led to substantial reduction of ubiquitination efficiency, suggesting a role for this region in mediating productive interactions with CRL7. The requirement of multisite phosphorylation and the N terminus of IRS1 for its turnover may ensure that complete IRS1 degradation occurs only when mTORC1 and S6K1 reach exceedingly high levels.


Subject(s)
Insulin Receptor Substrate Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Humans , Insulin/metabolism , Insulin Receptor Substrate Proteins/genetics , Phosphorylation , Proteolysis , Signal Transduction , Ubiquitin-Protein Ligases/genetics , Ubiquitination
19.
Philos Trans R Soc Lond B Biol Sci ; 367(1602): 2517-28, 2012 Sep 19.
Article in English | MEDLINE | ID: mdl-22889904

ABSTRACT

Protein kinases have evolved in eukaryotes to be highly dynamic molecular switches that regulate a plethora of biological processes. Two motifs, a dynamic activation segment and a GHI helical subdomain, distinguish the eukaryotic protein kinases (EPKs) from the more primitive eukaryotic-like kinases. The EPKs are themselves highly regulated, typically by phosphorylation, and this allows them to be rapidly turned on and off. The EPKs have a novel hydrophobic architecture that is typically regulated by the dynamic assembly of two hydrophobic spines that is usually mediated by the phosphorylation of an activation loop phosphate. Cyclic AMP-dependent protein kinase (protein kinase A (PKA)) is used as a prototype to exemplify these features of the PKA superfamily. Specificity in PKA signalling is achieved in large part by packaging the enzyme as inactive tetrameric holoenzymes with regulatory subunits that then are localized to macromolecular complexes in close proximity to dedicated substrates by targeting scaffold proteins. In this way, the cell creates discrete foci that most likely represent the physiological environment for cyclic AMP-mediated signalling.


Subject(s)
Eukaryota/enzymology , Evolution, Molecular , Phosphorylation , Protein Kinases/chemistry , Allosteric Regulation , Catalytic Domain , Enzyme Activation , Enzyme Stability , Eukaryota/chemistry , Holoenzymes/chemistry , Hydrophobic and Hydrophilic Interactions , Protein Conformation , Signal Transduction , Substrate Specificity
20.
J Mol Biol ; 422(2): 215-29, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22617327

ABSTRACT

The catalytic (C) subunit of cAMP-dependent protein kinase [protein kinase A (PKA)] is a major target of cAMP signaling, and its regulation is of fundamental importance to biological processes. One mode of regulation is N-myristylation, which has eluded structural and functional characterization so far because most crystal structures are of the non-myristylated enzyme, are phosphorylated on Ser10, and generally lack electron density for the first 13 residues. We crystallized myristylated wild-type (WT) PKA and a K7C mutant as binary (bound to a substrate peptide) and ternary [bound to a substrate peptide and adenosine-5'-(ß,γ-imido)triphosphate] complexes. There was clear electron density for the entire N-terminus in the binary complexes, both refined to 2.0 Å, and K7C ternary complex, refined to 1.35 Å. The N-termini in these three structures display a novel conformation with a previously unseen helix from residues 1 to 7. The K7C mutant appears to have a more stable N-terminus, and this correlated with a significant decrease in the B-factors for the N-terminus in the myr-K7C complexes compared to the WT binary complex. The N-terminus of the myristylated WT ternary complex, refined to 2.0 Å, was disordered as in previous structures. In addition to a more ordered N-terminus, the myristylated K7C mutant exhibited a 53% increase in k(cat). The effect of nucleotide binding on the structure of the N-terminus in the WT protein and the kinetic changes in the K7C protein suggest that myristylation or occupancy of the myristyl binding pocket may serve as a site for allosteric regulation in the C-subunit.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/chemistry , Myristic Acid/metabolism , Binding Sites , Crystallography, X-Ray , Cyclic AMP-Dependent Protein Kinases/metabolism , Kinetics , Models, Molecular , Peptides/metabolism , Protein Conformation , Protein Subunits/chemistry , Protein Subunits/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL