Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 92(3): 1115-1127, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38730562

ABSTRACT

PURPOSE: T1 mapping is a widely used quantitative MRI technique, but its tissue-specific values remain inconsistent across protocols, sites, and vendors. The ISMRM Reproducible Research and Quantitative MR study groups jointly launched a challenge to assess the reproducibility of a well-established inversion-recovery T1 mapping technique, using acquisition details from a seminal T1 mapping paper on a standardized phantom and in human brains. METHODS: The challenge used the acquisition protocol from Barral et al. (2010). Researchers collected T1 mapping data on the ISMRM/NIST phantom and/or in human brains. Data submission, pipeline development, and analysis were conducted using open-source platforms. Intersubmission and intrasubmission comparisons were performed. RESULTS: Eighteen submissions (39 phantom and 56 human datasets) on scanners by three MRI vendors were collected at 3 T (except one, at 0.35 T). The mean coefficient of variation was 6.1% for intersubmission phantom measurements, and 2.9% for intrasubmission measurements. For humans, the intersubmission/intrasubmission coefficient of variation was 5.9/3.2% in the genu and 16/6.9% in the cortex. An interactive dashboard for data visualization was also developed: https://rrsg2020.dashboards.neurolibre.org. CONCLUSION: The T1 intersubmission variability was twice as high as the intrasubmission variability in both phantoms and human brains, indicating that the acquisition details in the original paper were insufficient to reproduce a quantitative MRI protocol. This study reports the inherent uncertainty in T1 measures across independent research groups, bringing us one step closer to a practical clinical baseline of T1 variations in vivo.


Subject(s)
Brain , Crowdsourcing , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Phantoms, Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Reproducibility of Results , Image Processing, Computer-Assisted/methods , Brain Mapping/methods , Male , Female , Adult , Algorithms
2.
IEEE Trans Med Imaging ; 41(1): 14-26, 2022 01.
Article in English | MEDLINE | ID: mdl-34351856

ABSTRACT

Balanced steady-state free precession (bSSFP) imaging enables high scan efficiency in MRI, but differs from conventional sequences in terms of elevated sensitivity to main field inhomogeneity and nonstandard [Formula: see text]-weighted tissue contrast. To address these limitations, multiple bSSFP images of the same anatomy are commonly acquired with a set of different RF phase-cycling increments. Joint processing of phase-cycled acquisitions serves to mitigate sensitivity to field inhomogeneity. Recently phase-cycled bSSFP acquisitions were also leveraged to estimate relaxation parameters based on explicit signal models. While effective, these model-based methods often involve a large number of acquisitions (N ≈ 10-16), degrading scan efficiency. Here, we propose a new constrained ellipse fitting method (CELF) for parameter estimation with improved efficiency and accuracy in phase-cycled bSSFP MRI. CELF is based on the elliptical signal model framework for complex bSSFP signals; and it introduces geometrical constraints on ellipse properties to improve estimation efficiency, and dictionary-based identification to improve estimation accuracy. CELF generates maps of [Formula: see text], [Formula: see text], off-resonance and on-resonant bSSFP signal by employing a separate [Formula: see text] map to mitigate sensitivity to flip angle variations. Our results indicate that CELF can produce accurate off-resonance and banding-free bSSFP maps with as few as N = 4 acquisitions, while estimation accuracy for relaxation parameters is notably limited by biases from microstructural sensitivity of bSSFP imaging.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Artifacts , Phantoms, Imaging
3.
NMR Biomed ; 33(4): e4228, 2020 04.
Article in English | MEDLINE | ID: mdl-31985879

ABSTRACT

OBJECTIVE: Balanced steady-state free precession (bSSFP) imaging suffers from banding artifacts in the presence of magnetic field inhomogeneity. The purpose of this study is to identify an efficient strategy to reconstruct banding-free bSSFP images from multi-coil multi-acquisition datasets. METHOD: Previous techniques either assume that a naïve coil-combination is performed a priori resulting in suboptimal artifact suppression, or that artifact suppression is performed for each coil separately at the expense of significant computational burden. Here we propose a tailored method that factorizes the estimation of coil and bSSFP sensitivity profiles for improved accuracy and/or speed. RESULTS: In vivo experiments show that the proposed method outperforms naïve coil-combination and coil-by-coil processing in terms of both reconstruction quality and time. CONCLUSION: The proposed method enables computationally efficient artifact suppression for phase-cycled bSSFP imaging with modern coil arrays. Rapid imaging applications can efficiently benefit from the improved robustness of bSSFP imaging against field inhomogeneity.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Computer Simulation , Databases as Topic , Phantoms, Imaging , Signal-To-Noise Ratio , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...