Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Microbiology (Reading) ; 170(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39190025

ABSTRACT

Antimicrobial resistance (AMR) poses a significant threat to global public health. Notably, resistance to carbapenem and extended-spectrum ß-lactam antibiotics in Gram-negative bacteria is a major impediment to treating infections. Genes responsible for antibiotic resistance are frequently carried on plasmids, which can transfer between bacteria. Therefore, exploring strategies to prevent this transfer and the prevalence of AMR plasmids is timely and pertinent. Here, we show that certain natural product extracts and associated pure compounds can reduce the conjugation of AMR plasmids into new bacterial hosts. Using our established high-throughput fluorescence-based flow cytometry assay, we found that the natural products were more active in reducing transmission of the IncK extended-spectrum ß-lactamase-encoding plasmid pCT in Escherichia coli EC958c, compared to Klebsiella pneumoniae Ecl8 carrying the IncFII carbapenemase-encoding plasmid pKpQIL. The exception was the natural product rottlerin, also active in K. pneumoniae. In classical conjugation assays, rottlerin also reduced the conjugation frequency of the IncFII bla NDM-1 carrying plasmid pCPE16_3 from a clinical K. pneumoniae isolate. Our data indicate that the natural products tested here, in their current molecular structure, reduced conjugation by a small amount, which is unlikely to achieve a large-scale reduction in AMR in bacterial populations. However, certain natural products like rottlerin could provide a foundation for further research into compounds with effective anti-plasmid activity.


Subject(s)
Anti-Bacterial Agents , Biological Products , Escherichia coli , Klebsiella pneumoniae , Plasmids , beta-Lactamases , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Escherichia coli/genetics , Escherichia coli/drug effects , beta-Lactamases/genetics , beta-Lactamases/metabolism , Biological Products/pharmacology , Drug Resistance, Bacterial/genetics , Conjugation, Genetic , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Enterobacteriaceae/drug effects , Enterobacteriaceae/genetics , Microbial Sensitivity Tests , Food Microbiology , Gene Transfer, Horizontal
2.
Environ Microbiol ; 26(2): e16570, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38216524

ABSTRACT

Motility and chemotaxis are crucial processes for soil bacteria and plant-microbe interactions. This applies to the symbiotic bacterium Rhizobium leguminosarum, where motility is driven by flagella rotation controlled by two chemotaxis systems, Che1 and Che2. The Che1 cluster is particularly important in free-living motility prior to the establishment of the symbiosis, with a che1 mutant delayed in nodulation and reduced in nodulation competitiveness. The Che2 system alters bacteroid development and nodule maturation. In this work, we also identified 27 putative chemoreceptors encoded in the R. leguminosarum bv. viciae 3841 genome and characterized its motility in different growth conditions. We describe a metabolism-based taxis system in rhizobia that acts at high concentrations of dicarboxylates to halt motility independent of chemotaxis. Finally, we show how PTSNtr influences cell motility, with PTSNtr mutants exhibiting reduced swimming in different media. Motility is restored by the active forms of the PTSNtr output regulatory proteins, unphosphorylated ManX and phosphorylated PtsN. Overall, this work shows how rhizobia typify soil bacteria by having a high number of chemoreceptors and highlights the importance of the motility and chemotaxis mechanisms in a free-living cell in the rhizosphere, and at different stages of the symbiosis.


Subject(s)
Rhizobium leguminosarum , Rhizobium , Symbiosis , Bacterial Proteins/metabolism , Rhizobium leguminosarum/genetics , Rhizobium leguminosarum/metabolism , Soil
3.
FEMS Microbiol Rev ; 47(1)2023 01 16.
Article in English | MEDLINE | ID: mdl-36341518

ABSTRACT

Antimicrobial resistance (AMR) is a global threat, with evolution and spread of resistance to frontline antibiotics outpacing the development of novel treatments. The spread of AMR is perpetuated by transfer of antimicrobial resistance genes (ARGs) between bacteria, notably those encoded by conjugative plasmids. The human gut microbiome is a known 'melting pot' for plasmid conjugation, with ARG transfer in this environment widely documented. There is a need to better understand the factors affecting the incidence of these transfer events, and to investigate methods of potentially counteracting the spread of ARGs. This review describes the use and potential of three approaches to studying conjugation in the human gut: observation of in situ events in hospitalized patients, modelling of the microbiome in vivo predominantly in rodent models, and the use of in vitro models of various complexities. Each has brought unique insights to our understanding of conjugation in the gut. The use and development of these systems, and combinations thereof, will be pivotal in better understanding the significance, prevalence, and manipulability of horizontal gene transfer in the gut microbiome.


Subject(s)
Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Drug Resistance, Bacterial/genetics , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Gene Transfer, Horizontal , Conjugation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL