Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Arch Pharm (Weinheim) ; 357(6): e2300649, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38396281

ABSTRACT

Transcription factors are generally considered challenging, if not "undruggable", targets but they promise new therapeutic options due to their fundamental involvement in many diseases. In this study, we aim to assess the ligandability of the C-terminal Rel-homology domain of nuclear factor of activated T cells 1 (NFAT1), a TF implicated in T-cell regulation. Using a combination of experimental and computational approaches, we demonstrate that small molecule fragments can indeed bind to this protein domain. The newly identified binder is the first small molecule binder to NFAT1 validated with biophysical methods and an elucidated binding mode by X-ray crystallography. The reported eutomer/distomer pair provides a strong basis for potential exploration of higher potency binders on the path toward degrader or glue modalities.


Subject(s)
NFATC Transcription Factors , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/chemistry , Ligands , Crystallography, X-Ray , Humans , Structure-Activity Relationship , Protein Domains , Protein Binding , Binding Sites
2.
J Med Chem ; 65(21): 14614-14629, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36300829

ABSTRACT

Activating mutations in KRAS are the most frequent oncogenic alterations in cancer. The oncogenic hotspot position 12, located at the lip of the switch II pocket, offers a covalent attachment point for KRASG12C inhibitors. To date, KRASG12C inhibitors have been discovered by first covalently binding to the cysteine at position 12 and then optimizing pocket binding. We report on the discovery of the in vivo active KRASG12C inhibitor BI-0474 using a different approach, in which small molecules that bind reversibly to the switch II pocket were identified and then optimized for non-covalent binding using structure-based design. Finally, the Michael acceptor containing warhead was attached. Our approach offers not only an alternative approach to discovering KRASG12C inhibitors but also provides a starting point for the discovery of inhibitors against other oncogenic KRAS mutants.


Subject(s)
Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Genes, ras , Mutation , Neoplasms/genetics , Cysteine
3.
Nat Chem Biol ; 17(10): 1084-1092, 2021 10.
Article in English | MEDLINE | ID: mdl-34294896

ABSTRACT

HUWE1 is a universal quality-control E3 ligase that marks diverse client proteins for proteasomal degradation. Although the giant HECT enzyme is an essential component of the ubiquitin-proteasome system closely linked with severe human diseases, its molecular mechanism is little understood. Here, we present the crystal structure of Nematocida HUWE1, revealing how a single E3 enzyme has specificity for a multitude of unrelated substrates. The protein adopts a remarkable snake-like structure, where the C-terminal HECT domain heads an extended alpha-solenoid body that coils in on itself and houses various protein-protein interaction modules. Our integrative structural analysis shows that this ring structure is highly dynamic, enabling the flexible HECT domain to reach protein targets presented by the various acceptor sites. Together, our data demonstrate how HUWE1 is regulated by its unique structure, adapting a promiscuous E3 ligase to selectively target unassembled orphan proteins.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Microsporidia/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Fungal Proteins , Insecta , Microsporidia/genetics , Models, Molecular , Protein Conformation , Protein Domains , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics
4.
Curr Opin Struct Biol ; 71: 136-147, 2021 12.
Article in English | MEDLINE | ID: mdl-34303932

ABSTRACT

It has taken four decades of research to see the first major breakthrough for KRAS-driven cancers. In particular, the last decade has seen a paradigm shift with the discovery of druggable pockets on KRAS and clinical efficacy with covalent KRASG12C inhibitors, culminating in the first approval of sotorasib monotherapy as second-line treatment in KRASG12C-driven non-small-cell lung cancer. Nevertheless, 85% of all KRAS-mutated cancers still lack novel agents. In this review, we will outline the structure, function, and post-translational modifications of KRAS and highlight the various approaches being adopted to drug KRAS, ranging from selective to pan concepts. The range of molecular modalities being explored, including PROTACs and glues, will also be described. Finally, an outlook toward the next wave of KRAS drugs and the challenges of resistance will be given.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Mutation , Proto-Oncogene Proteins p21(ras)/genetics
5.
Curr Opin Chem Biol ; 62: 109-118, 2021 06.
Article in English | MEDLINE | ID: mdl-33848766

ABSTRACT

Son of Sevenless (SOS) is a guanine nucleotide exchange factor that activates the important cell signaling switch KRAS. SOS acts as a pacemaker for KRAS, the beating heart of cancer, by catalyzing the "beating" from the KRAS(off) to the KRAS(on) conformation. Activating mutations in SOS1 are common in Noonan syndrome and oncogenic alterations in KRAS drive 1 in seven human cancers. Promising clinical efficacy has been observed for selective KRASG12C inhibitors, but the vast majority of oncogenic KRAS alterations remain undrugged. The discovery of a druggable pocket on SOS1 has led to potent SOS1 inhibitors such as BI-3406. SOS1 inhibition leads to antiproliferative effects against all major KRAS mutants. The first SOS1 inhibitor has entered clinical trials for KRAS-mutated cancers. In this review, we provide an overview of SOS1 function, its association with cancer and RASopathies, known SOS1 activators and inhibitors, and a future perspective is provided.


Subject(s)
Antineoplastic Agents/chemistry , Mutant Proteins/chemistry , Neoplasms/therapy , Proto-Oncogene Proteins p21(ras)/metabolism , SOS1 Protein/antagonists & inhibitors , Acetonitriles/pharmacology , Antineoplastic Agents/pharmacology , Gene Expression Regulation , Humans , Mutation , Pacemaker, Artificial , Piperazines/pharmacology , Protein Conformation , Pyridines/pharmacology , Pyrimidines/pharmacology , SOS1 Protein/metabolism , Signal Transduction , Structure-Activity Relationship
6.
J Med Chem ; 64(10): 6569-6580, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33719426

ABSTRACT

KRAS, the most common oncogenic driver in human cancers, is controlled and signals primarily through protein-protein interactions (PPIs). The interaction between KRAS and SOS1, crucial for the activation of KRAS, is a typical, challenging PPI with a large contact surface area and high affinity. Here, we report that the addition of only one atom placed between Y884SOS1 and A73KRAS is sufficient to convert SOS1 activators into SOS1 inhibitors. We also disclose the discovery of BI-3406. Combination with the upstream EGFR inhibitor afatinib shows in vivo efficacy against KRASG13D mutant colorectal tumor cells, demonstrating the utility of BI-3406 to probe SOS1 biology. These findings challenge the dogma that large molecules are required to disrupt challenging PPIs. Instead, a "foot in the door" approach, whereby single atoms or small functional groups placed between key PPI interactions, can lead to potent inhibitors even for challenging PPIs such as SOS1-KRAS.


Subject(s)
Proto-Oncogene Proteins p21(ras)/metabolism , SOS1 Protein/metabolism , Afatinib/chemistry , Afatinib/metabolism , Afatinib/therapeutic use , Allosteric Regulation/drug effects , Binding Sites , Catalytic Domain , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Interaction Maps/drug effects , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Quinazolines/chemistry , Quinazolines/metabolism , Quinazolines/pharmacology , Quinazolines/therapeutic use , SOS1 Protein/agonists , SOS1 Protein/antagonists & inhibitors , SOS1 Protein/genetics
7.
ChemMedChem ; 16(9): 1420-1424, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33275320

ABSTRACT

Aberrant WNT pathway activation, leading to nuclear accumulation of ß-catenin, is a key oncogenic driver event. Mutations in the tumor suppressor gene APC lead to impaired proteasomal degradation of ß-catenin and subsequent nuclear translocation. Restoring cellular degradation of ß-catenin represents a potential therapeutic strategy. Here, we report the fragment-based discovery of a small molecule binder to ß-catenin, including the structural elucidation of the binding mode by X-ray crystallography. The difficulty in drugging ß-catenin was confirmed as the primary screening campaigns identified only few and very weak hits. Iterative virtual and NMR screening techniques were required to discover a compound with sufficient potency to be able to obtain an X-ray co-crystal structure. The binding site is located between armadillo repeats two and three, adjacent to the BCL9 and TCF4 binding sites. Genetic studies show that it is unlikely to be useful for the development of protein-protein interaction inhibitors but structural information and established assays provide a solid basis for a prospective optimization towards ß-catenin proteolysis targeting chimeras (PROTACs) as alternative modality.


Subject(s)
Small Molecule Libraries/chemistry , beta Catenin/antagonists & inhibitors , Binding Sites , Crystallography, X-Ray , Humans , Molecular Dynamics Simulation , Protein Interaction Maps/drug effects , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , beta Catenin/metabolism
8.
Cancer Discov ; 11(1): 142-157, 2021 01.
Article in English | MEDLINE | ID: mdl-32816843

ABSTRACT

KRAS is the most frequently mutated driver of pancreatic, colorectal, and non-small cell lung cancers. Direct KRAS blockade has proved challenging, and inhibition of a key downstream effector pathway, the RAF-MEK-ERK cascade, has shown limited success because of activation of feedback networks that keep the pathway in check. We hypothesized that inhibiting SOS1, a KRAS activator and important feedback node, represents an effective approach to treat KRAS-driven cancers. We report the discovery of a highly potent, selective, and orally bioavailable small-molecule SOS1 inhibitor, BI-3406, that binds to the catalytic domain of SOS1, thereby preventing the interaction with KRAS. BI-3406 reduces formation of GTP-loaded RAS and limits cellular proliferation of a broad range of KRAS-driven cancers. Importantly, BI-3406 attenuates feedback reactivation induced by MEK inhibitors and thereby enhances sensitivity of KRAS-dependent cancers to MEK inhibition. Combined SOS1 and MEK inhibition represents a novel and effective therapeutic concept to address KRAS-driven tumors. SIGNIFICANCE: To date, there are no effective targeted pan-KRAS therapies. In-depth characterization of BI-3406 activity and identification of MEK inhibitors as effective combination partners provide an attractive therapeutic concept for the majority of KRAS-mutant cancers, including those fueled by the most prevalent mutant KRAS oncoproteins, G12D, G12V, G12C, and G13D.See related commentary by Zhao et al., p. 17.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , Cell Line, Tumor , Humans , Mitogen-Activated Protein Kinase Kinases , Mutation , Nucleotides , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics
10.
Future Med Chem ; 12(21): 1911-1923, 2020 11.
Article in English | MEDLINE | ID: mdl-32779487

ABSTRACT

Activating mutations in the three human RAS genes, KRAS, NRAS and HRAS, are among the most common oncogenic drivers in human cancers. Covalent KRASG12C inhibitors, which bind to the switch II pocket in the 'off state' of KRAS, represent the first direct KRAS drugs that entered human clinical trials. However, the remaining 85% of non-KRASG12C-driven cancers remain undrugged as do NRAS and HRAS and no drugs targeting the 'on state' have been discovered so far. The switch I/II pocket is a second pocket for which the nanomolar inhibitor BI-2852 has been discovered. Here, we elucidate inhibitor binding modes in KRAS, NRAS and HRAS on and off and discuss future strategies to drug all RAS isoforms with this one pocket.


Subject(s)
Enzyme Inhibitors/pharmacology , Isoenzymes/antagonists & inhibitors , Neoplasms/drug therapy , ras Proteins/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Neoplasms/enzymology , ras Proteins/genetics , ras Proteins/metabolism
11.
ACS Cent Sci ; 6(7): 1223-1230, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32724856

ABSTRACT

Protein degraders, also known as proteolysis targeting chimeras (PROTACs), are bifunctional small molecules that promote cellular degradation of a protein of interest (POI). PROTACs act as molecular mediators, bringing an E3 ligase and a POI into proximity, thus promoting ubiquitination and degradation of the targeted POI. Despite their great promise as next-generation pharmaceutical drugs, the development of new PROTACs is challenged by the complexity of the system, which involves binary and ternary interactions between components. Here, we demonstrate the strength of native mass spectrometry (nMS), a label-free technique, to provide novel insight into PROTAC-mediated protein interactions. We show that nMS can monitor the formation of ternary E3-PROTAC-POI complexes and detect various intermediate species in a single experiment. A unique benefit of the method is its ability to reveal preferentially formed E3-PROTAC-POI combinations in competition experiments with multiple substrate proteins, thereby positioning it as an ideal high-throughput screening strategy during the development of new PROTACs.

12.
Angew Chem Int Ed Engl ; 59(35): 14861-14868, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32421895

ABSTRACT

While CH-π interactions with target proteins are crucial determinants for the affinity of arguably every drug molecule, no method exists to directly measure the strength of individual CH-π interactions in drug-protein complexes. Herein, we present a fast and reliable methodology called PI (π interactions) by NMR, which can differentiate the strength of protein-ligand CH-π interactions in solution. By combining selective amino-acid side-chain labeling with 1 H-13 C NMR, we are able to identify specific protein protons of side-chains engaged in CH-π interactions with aromatic ring systems of a ligand, based solely on 1 H chemical-shift values of the interacting protein aromatic ring protons. The information encoded in the chemical shifts induced by such interactions serves as a proxy for the strength of each individual CH-π interaction. PI by NMR changes the paradigm by which chemists can optimize the potency of drug candidates: direct determination of individual π interactions rather than averaged measures of all interactions.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Proteins/chemistry , Humans , Models, Molecular
14.
J Med Chem ; 62(17): 7976-7997, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31365252

ABSTRACT

Phosphoglycerate dehydrogenase (PHGDH) is known to be the rate-limiting enzyme in the serine synthesis pathway in humans. It converts glycolysis-derived 3-phosphoglycerate to 3-phosphopyruvate in a co-factor-dependent oxidation reaction. Herein, we report the discovery of BI-4916, a prodrug of the co-factor nicotinamide adenine dinucleotide (NADH/NAD+)-competitive PHGDH inhibitor BI-4924, which has shown high selectivity against the majority of other dehydrogenase targets. Starting with a fragment-based screening, a subsequent hit optimization using structure-based drug design was conducted to deliver a single-digit nanomolar lead series and to improve potency by 6 orders of magnitude. To this end, an intracellular ester cleavage mechanism of the ester prodrug was utilized to achieve intracellular enrichment of the actual carboxylic acid based drug and thus overcome high cytosolic levels of the competitive cofactors NADH/NAD+.


Subject(s)
Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Phosphoglycerate Dehydrogenase/antagonists & inhibitors , Serine/antagonists & inhibitors , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Indoles/chemical synthesis , Indoles/chemistry , Models, Molecular , Molecular Structure , Phosphoglycerate Dehydrogenase/metabolism , Serine/biosynthesis , Structure-Activity Relationship
15.
Proc Natl Acad Sci U S A ; 116(32): 15823-15829, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31332011

ABSTRACT

The 3 human RAS genes, KRAS, NRAS, and HRAS, encode 4 different RAS proteins which belong to the protein family of small GTPases that function as binary molecular switches involved in cell signaling. Activating mutations in RAS are among the most common oncogenic drivers in human cancers, with KRAS being the most frequently mutated oncogene. Although KRAS is an excellent drug discovery target for many cancers, and despite decades of research, no therapeutic agent directly targeting RAS has been clinically approved. Using structure-based drug design, we have discovered BI-2852 (1), a KRAS inhibitor that binds with nanomolar affinity to a pocket, thus far perceived to be "undruggable," between switch I and II on RAS; 1 is mechanistically distinct from covalent KRASG12C inhibitors because it binds to a different pocket present in both the active and inactive forms of KRAS. In doing so, it blocks all GEF, GAP, and effector interactions with KRAS, leading to inhibition of downstream signaling and an antiproliferative effect in the low micromolar range in KRAS mutant cells. These findings clearly demonstrate that this so-called switch I/II pocket is indeed druggable and provide the scientific community with a chemical probe that simultaneously targets the active and inactive forms of KRAS.


Subject(s)
Drug Discovery , Pharmaceutical Preparations/chemistry , Proto-Oncogene Proteins p21(ras)/chemistry , Guanosine Triphosphate/metabolism , Humans , Models, Molecular , Nanoparticles/chemistry
16.
Chemistry ; 25(52): 12037-12041, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31231840

ABSTRACT

Natural products have proven to be a rich source of molecular architectures for drugs. Here, an integrated approach to natural product screening is proposed, which uncovered eight new natural product scaffolds for KRAS-the most frequently mutated oncogenic driver in human cancers, which has remained thus far undrugged. The approach combines aspects of virtual screening, fragment-based screening, structure-activity relationships (SAR) by NMR, and structure-based drug discovery to overcome the limitations in traditional natural product approaches. By using our approach, a new "snugness of fit" scoring function and the first crystal-soaking system of the active form of KRASG12D , the protein-ligand X-ray structures of a tricyclic indolopyrrole fungal alkaloid and an indoloisoquinolinone have been successfully elucidated. The natural product KRAS hits discovered provide fruitful ground for the optimization of highly potent natural-product-based inhibitors of the active form of oncogenic RAS. This integrated approach for screening natural products also holds promise for other "undruggable" targets.

17.
Cell Rep ; 20(12): 2860-2875, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28930682

ABSTRACT

The transcription factor BCL6 is a known driver of oncogenesis in lymphoid malignancies, including diffuse large B cell lymphoma (DLBCL). Disruption of its interaction with transcriptional repressors interferes with the oncogenic effects of BCL6. We used a structure-based drug design to develop highly potent compounds that block this interaction. A subset of these inhibitors also causes rapid ubiquitylation and degradation of BCL6 in cells. These compounds display significantly stronger induction of expression of BCL6-repressed genes and anti-proliferative effects than compounds that merely inhibit co-repressor interactions. This work establishes the BTB domain as a highly druggable structure, paving the way for the use of other members of this protein family as drug targets. The magnitude of effects elicited by this class of BCL6-degrading compounds exceeds that of our equipotent non-degrading inhibitors, suggesting opportunities for the development of BCL6-based lymphoma therapeutics.


Subject(s)
Proteolysis , Proto-Oncogene Proteins c-bcl-6/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , DNA/metabolism , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Inhibitory Concentration 50 , Kinetics , Models, Molecular , Proteasome Endopeptidase Complex/metabolism , Protein Binding/drug effects , Protein Domains , Proteolysis/drug effects , Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-6/chemistry , Pyrimidines/pharmacology , Structure-Activity Relationship , Ubiquitination/drug effects
18.
J Med Chem ; 60(21): 8708-8715, 2017 11 09.
Article in English | MEDLINE | ID: mdl-28910100

ABSTRACT

Fragment-based drug design exploits initial screening of low molecular weight compounds and their concomitant affinity improvement. The multitude of possible chemical modifications highlights the necessity to obtain structural information about the binding mode of a fragment. Herein we describe a novel NMR methodology (LOGSY titration) that allows the determination of binding modes of low affinity binders in the protein-ligand interface and reveals suitable ligand positions for the addition of functional groups that either address or substitute protein-bound water, information of utmost importance for drug design. The particular benefit of the methodology and in contrast to conventional ligand-based methods is the independence of the molecular weight of the protein under study. The validity of the novel approach is demonstrated on two ligands interacting with bromodomain 1 of bromodomain containing protein 4, a prominent cancer target in pharmaceutical industry.


Subject(s)
Drug Design , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Water/chemistry , Binding Sites , Cell Cycle Proteins , Humans , Ligands , Models, Molecular , Nuclear Proteins/chemistry , Protein Binding , Titrimetry , Transcription Factors/chemistry
19.
J Med Chem ; 59(22): 10147-10162, 2016 11 23.
Article in English | MEDLINE | ID: mdl-27775892

ABSTRACT

Scaffold modification based on Wang's pioneering MDM2-p53 inhibitors led to novel, chemically stable spiro-oxindole compounds bearing a spiro[3H-indole-3,2'-pyrrolidin]-2(1H)-one scaffold that are not prone to epimerization as observed for the initial spiro[3H-indole-3,3'-pyrrolidin]-2(1H)-one scaffold. Further structure-based optimization inspired by natural product architectures led to a complex fused ring system ideally suited to bind to the MDM2 protein and to interrupt its protein-protein interaction (PPI) with TP53. The compounds are highly selective and show in vivo efficacy in a SJSA-1 xenograft model even when given as a single dose as demonstrated for 4-[(3S,3'S,3'aS,5'R,6'aS)-6-chloro-3'-(3-chloro-2-fluorophenyl)-1'-(cyclopropylmethyl)-2-oxo-1,2,3',3'a,4',5',6',6'a-octahydro-1'H-spiro[indole-3,2'-pyrrolo[3,2-b]pyrrole]-5'-yl]benzoic acid (BI-0252).


Subject(s)
Drug Discovery , Indoles/pharmacology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Pyrrolidinones/pharmacology , Spiro Compounds/pharmacology , Tumor Suppressor Protein p53/antagonists & inhibitors , Administration, Oral , Dose-Response Relationship, Drug , Humans , Indoles/administration & dosage , Indoles/chemistry , Models, Molecular , Molecular Structure , Proto-Oncogene Proteins c-mdm2/metabolism , Pyrrolidinones/administration & dosage , Pyrrolidinones/chemistry , Spiro Compounds/administration & dosage , Spiro Compounds/chemistry , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism
20.
J Med Chem ; 59(10): 4462-75, 2016 05 26.
Article in English | MEDLINE | ID: mdl-26914985

ABSTRACT

Components of the chromatin remodelling switch/sucrose nonfermentable (SWI/SNF) complex are recurrently mutated in tumors, suggesting that altering the activity of the complex plays a role in oncogenesis. However, the role that the individual subunits play in this process is not clear. We set out to develop an inhibitor compound targeting the bromodomain of BRD9 in order to evaluate its function within the SWI/SNF complex. Here, we present the discovery and development of a potent and selective BRD9 bromodomain inhibitor series based on a new pyridinone-like scaffold. Crystallographic information on the inhibitors bound to BRD9 guided their development with respect to potency for BRD9 and selectivity against BRD4. These compounds modulate BRD9 bromodomain cellular function and display antitumor activity in an AML xenograft model. Two chemical probes, BI-7273 (1) and BI-9564 (2), were identified that should prove to be useful in further exploring BRD9 bromodomain biology in both in vitro and in vivo settings.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Pyridones/pharmacology , Transcription Factors/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Mice , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Pyridones/chemical synthesis , Pyridones/chemistry , Structure-Activity Relationship , Transcription Factors/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...