Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Trends Genet ; 40(1): 52-68, 2024 01.
Article in English | MEDLINE | ID: mdl-38000919

ABSTRACT

First identified in isogenic mice, metastable epialleles (MEs) are loci where the extent of DNA methylation (DNAm) is variable between individuals but correlates across tissues derived from different germ layers within a given individual. This property, termed systemic interindividual variation (SIV), is attributed to stochastic methylation establishment before germ layer differentiation. Evidence suggests that some putative human MEs are sensitive to environmental exposures in early development. In this review we introduce key concepts pertaining to human MEs, describe methods used to identify MEs in humans, and review their genomic features. We also highlight studies linking DNAm at putative human MEs to early environmental exposures and postnatal (including disease) phenotypes.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Humans , Animals , Mice , DNA Methylation/genetics , Phenotype , Genomics , Alleles
2.
Nat Commun ; 14(1): 5336, 2023 09 02.
Article in English | MEDLINE | ID: mdl-37660134

ABSTRACT

DNA methylation at the CpG dinucleotide is considered a stable epigenetic mark due to its presumed long-term inheritance through clonal expansion. Here, we perform high-throughput bisulfite sequencing on clonally derived somatic cell lines to quantitatively measure methylation inheritance at the nucleotide level. We find that although DNA methylation is generally faithfully maintained at hypo- and hypermethylated sites, this is not the case at intermediately methylated CpGs. Low fidelity intermediate methylation is interspersed throughout the genome and within genes with no or low transcriptional activity, and is not coordinately maintained between neighbouring sites. We determine that the probabilistic changes that occur at intermediately methylated sites are likely due to DNMT1 rather than DNMT3A/3B activity. The observed lack of clonal inheritance at intermediately methylated sites challenges the current epigenetic inheritance model and has direct implications for both the functional relevance and general interpretability of DNA methylation as a stable epigenetic mark.


Subject(s)
DNA Methylation , Nucleotides , Base Sequence , Cell Line , Epigenesis, Genetic
3.
Nat Commun ; 14(1): 5200, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37626025

ABSTRACT

Human height is strongly influenced by genetics but the contribution of modifiable epigenetic factors is under-explored, particularly in low and middle-income countries (LMIC). We investigate links between blood DNA methylation and child height in four LMIC cohorts (n = 1927) and identify a robust association at three CpGs in the suppressor of cytokine signaling 3 (SOCS3) gene which replicates in a high-income country cohort (n = 879). SOCS3 methylation (SOCS3m)-height associations are independent of genetic effects. Mendelian randomization analysis confirms a causal effect of SOCS3m on height. In longitudinal analysis, SOCS3m explains a maximum 9.5% of height variance in mid-childhood while the variance explained by height polygenic risk score increases from birth to 21 years. Children's SOCS3m is associated with prenatal maternal folate and socio-economic status. In-vitro characterization confirms a regulatory effect of SOCS3m on gene expression. Our findings suggest epigenetic modifications may play an important role in driving child height in LMIC.


Subject(s)
DNA Methylation , Suppressor of Cytokine Signaling Proteins , Female , Pregnancy , Humans , Child , DNA Methylation/genetics , Suppressor of Cytokine Signaling Proteins/genetics , Epigenesis, Genetic , Epigenomics , Cytokines , Suppressor of Cytokine Signaling 3 Protein/genetics
4.
Sci Rep ; 13(1): 10349, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365154

ABSTRACT

Human neonates elicit a profound hypoferremia which may protect against bacterial sepsis. We examined the transience of this hypoferremia by measuring iron and its chaperone proteins, inflammatory and haematological parameters over the first post-partum week. We prospectively studied term, normal weight Gambian newborns. Umbilical cord vein and artery, and serial venous blood samples up to day 7 were collected. Hepcidin, serum iron, transferrin, transferrin saturation, haptoglobin, c-reactive protein, α1-acid-glycoprotein, soluble transferrin receptor, ferritin, unbound iron-binding capacity and full blood count were assayed. In 278 neonates we confirmed the profound early postnatal decrease in serum iron (22.7 ± 7.0 µmol/L at birth to 7.3 ± 4.6 µmol/L during the first 6-24 h after birth) and transferrin saturation (50.2 ± 16.7% to 14.4 ± 6.1%). Both variables increased steadily to reach 16.5 ± 3.9 µmol/L and 36.6 ± 9.2% at day 7. Hepcidin increased rapidly during the first 24 h of life (19.4 ± 14.4 ng/ml to 38.9 ± 23.9 ng/ml) and then dipped (32.7 ± 18.4 ng/ml) before rising again at one week after birth (45.2 ± 19.1 ng/ml). Inflammatory markers increased during the first week of life. The acute postnatal hypoferremia in human neonates on the first day of life is highly reproducible but transient. The rise in serum iron during the first week of life occurs despite very high hepcidin levels indicating partial hepcidin resistance.Trial Registration: clinicaltrials.gov (NCT03353051). Registration date: November 27, 2017.


Subject(s)
Hepcidins , Iron , Female , Infant, Newborn , Humans , Birth Weight , Gambia , Transferrin , Receptors, Transferrin , Homeostasis
5.
Nucleic Acids Res ; 50(12): 6735-6752, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35713545

ABSTRACT

We analysed DNA methylation data from 30 datasets comprising 3474 individuals, 19 tissues and 8 ethnicities at CpGs covered by the Illumina450K array. We identified 4143 hypervariable CpGs ('hvCpGs') with methylation in the top 5% most variable sites across multiple tissues and ethnicities. hvCpG methylation was influenced but not determined by genetic variation, and was not linked to probe reliability, epigenetic drift, age, sex or cell heterogeneity effects. hvCpG methylation tended to covary across tissues derived from different germ-layers and hvCpGs were enriched for proximity to ERV1 and ERVK retrovirus elements. hvCpGs were also enriched for loci previously associated with periconceptional environment, parent-of-origin-specific methylation, and distinctive methylation signatures in monozygotic twins. Together, these properties position hvCpGs as strong candidates for studying how stochastic and/or environmentally influenced DNA methylation states which are established in the early embryo and maintained stably thereafter can influence life-long health and disease.


Subject(s)
DNA Methylation , Embryo, Mammalian , Humans , DNA Methylation/genetics , Reproducibility of Results , Embryo, Mammalian/metabolism , CpG Islands , Ethnicity
6.
Elife ; 112022 02 21.
Article in English | MEDLINE | ID: mdl-35188105

ABSTRACT

In humans, DNA methylation marks inherited from gametes are largely erased following fertilisation, prior to construction of the embryonic methylome. Exploiting a natural experiment of seasonal variation including changes in diet and nutritional status in rural Gambia, we analysed three datasets covering two independent child cohorts and identified 259 CpGs showing consistent associations between season of conception (SoC) and DNA methylation. SoC effects were most apparent in early infancy, with evidence of attenuation by mid-childhood. SoC-associated CpGs were enriched for metastable epialleles, parent-of-origin-specific methylation and germline differentially methylated regions, supporting a periconceptional environmental influence. Many SoC-associated CpGs overlapped enhancers or sites of active transcription in H1 embryonic stem cells and fetal tissues. Half were influenced but not determined by measured genetic variants that were independent of SoC. Environmental 'hotspots' providing a record of environmental influence at periconception constitute a valuable resource for investigating epigenetic mechanisms linking early exposures to lifelong health and disease.


Subject(s)
DNA Methylation , Epigenome , Child , CpG Islands , Embryo, Mammalian , Epigenesis, Genetic , Fertilization , Humans
7.
Sci Adv ; 7(45): eabj1561, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34739318

ABSTRACT

PAX8 is a key thyroid transcription factor implicated in thyroid gland differentiation and function, and PAX8 gene methylation is reported to be sensitive to the periconceptional environment. Using a novel recall-by-epigenotype study in Gambian children, we found that PAX8 hypomethylation at age 2 years is associated with a 21% increase in thyroid volume and an increase in free thyroxine (T4) at 5 to 8 years, the latter equivalent to 8.4% of the normal range. Free T4 was associated with a decrease in DXA-derived body fat and bone mineral density. Furthermore, offspring PAX8 methylation was associated with periconceptional maternal nutrition, and methylation variability was influenced by genotype, suggesting that sensitivity to environmental exposures may be under partial genetic control. Together, our results demonstrate a possible link between early environment, PAX8 gene methylation and thyroid gland development and function, with potential implications for early embryonic programming of thyroid-related health and disease.

8.
Mob DNA ; 12(1): 6, 2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33612119

ABSTRACT

BACKGROUND: Transposable elements (TEs) are enriched in cytosine methylation, preventing their mobility within the genome. We previously identified a genome-wide repertoire of candidate intracisternal A particle (IAP) TEs in mice that exhibit inter-individual variability in this methylation (VM-IAPs) with implications for genome function. RESULTS: Here we validate these metastable epialleles and discover a novel class that exhibit tissue specificity (tsVM-IAPs) in addition to those with uniform methylation in all tissues (constitutive- or cVM-IAPs); both types have the potential to regulate genes in cis. Screening for variable methylation at other TEs shows that this phenomenon is largely limited to IAPs, which are amongst the youngest and most active endogenous retroviruses. We identify sequences enriched within cVM-IAPs, but determine that these are not sufficient to confer epigenetic variability. CTCF is enriched at VM-IAPs with binding inversely correlated with DNA methylation. We uncover dynamic physical interactions between cVM-IAPs with low methylation ranges and other genomic loci, suggesting that VM-IAPs have the potential for long-range regulation. CONCLUSION: Our findings indicate that a recently evolved interplay between genetic sequence, CTCF binding, and DNA methylation at young TEs can result in inter-individual variability in transcriptional outcomes with implications for phenotypic variation.

9.
Sci Rep ; 9(1): 16596, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31719592

ABSTRACT

Septicemia is a leading cause of death among neonates in low-income settings, a situation that is deteriorating due to high levels of antimicrobial resistance. Novel interventions are urgently needed. Iron stimulates the growth of most bacteria and hypoferremia induced by the acute phase response is a key element of innate immunity. Cord blood, which has high levels of hemoglobin, iron and transferrin saturation, has hitherto been used as a proxy for the iron status of neonates. We investigated hepcidin-mediated redistribution of iron in the immediate post-natal period and tested the effect of the observed hypoferremia on the growth of pathogens frequently associated with neonatal sepsis. Healthy, vaginally delivered neonates were enrolled in a cohort study at a single center in rural Gambia (N = 120). Cord blood and two further blood samples up to 96 hours of age were analyzed for markers of iron metabolism. Samples pooled by transferrin saturation were used to conduct ex-vivo growth assays with Staphylococcus aureus, Streptococcus agalactiae, Escherichia coli and Klebsiella pneumonia. A profound reduction in transferrin saturation occurred within the first 12 h of life, from high mean levels in cord blood (47.6% (95% CI 43.7-51.5%)) to levels at the lower end of the normal reference range by 24 h of age (24.4% (21.2-27.6%)). These levels remained suppressed to 48 h of age with some recovery by 96 h. Reductions in serum iron were associated with high hepcidin and IL-6 levels. Ex-vivo growth of all sentinel pathogens was strongly associated with serum transferrin saturation. These results suggest the possibility that the hypoferremia could be augmented (e.g. by mini-hepcidins) as a novel therapeutic option that would not be vulnerable to antimicrobial resistance. Trial registration: The original trial in which this study was nested is registered at ISRCTN, number 93854442.


Subject(s)
Bacteria/growth & development , Bacterial Infections/prevention & control , Fetal Blood/metabolism , Hepcidins/metabolism , Immunity, Innate/immunology , Iron Deficiencies , Bacterial Infections/metabolism , Bacterial Infections/microbiology , Cohort Studies , Female , Hepcidins/genetics , Humans , Infant, Newborn , Male
10.
Genome Biol ; 20(1): 105, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31155008

ABSTRACT

BACKGROUND: DNA methylation is thought to be an important determinant of human phenotypic variation, but its inherent cell type specificity has impeded progress on this question. At exceptional genomic regions, interindividual variation in DNA methylation occurs systemically. Like genetic variants, systemic interindividual epigenetic variants are stable, can influence phenotype, and can be assessed in any easily biopsiable DNA sample. We describe an unbiased screen for human genomic regions at which interindividual variation in DNA methylation is not tissue-specific. RESULTS: For each of 10 donors from the NIH Genotype-Tissue Expression (GTEx) program, CpG methylation is measured by deep whole-genome bisulfite sequencing of genomic DNA from tissues representing the three germ layer lineages: thyroid (endoderm), heart (mesoderm), and brain (ectoderm). We develop a computational algorithm to identify genomic regions at which interindividual variation in DNA methylation is consistent across all three lineages. This approach identifies 9926 correlated regions of systemic interindividual variation (CoRSIVs). These regions, comprising just 0.1% of the human genome, are inter-correlated over long genomic distances, associated with transposable elements and subtelomeric regions, conserved across diverse human ethnic groups, sensitive to periconceptional environment, and associated with genes implicated in a broad range of human disorders and phenotypes. CoRSIV methylation in one tissue can predict expression of associated genes in other tissues. CONCLUSIONS: In addition to charting a previously unexplored molecular level of human individuality, this atlas of human CoRSIVs provides a resource for future population-based investigations into how interindividual epigenetic variation modulates risk of disease.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Genome, Human , Aged , Brain/metabolism , Case-Control Studies , Child , Disease/genetics , Female , Gambia , Genetic Variation , Humans , Male , Middle Aged , Myocardium/metabolism , Pregnancy , Prenatal Nutritional Physiological Phenomena , Seasons , Thyroid Gland/metabolism
11.
Sci Adv ; 4(7): eaat2624, 2018 07.
Article in English | MEDLINE | ID: mdl-30009262

ABSTRACT

The molecular mechanisms responsible for the developmental origins of later disease are currently unknown. We previously demonstrated that women's periconceptional nutrition predicts their offspring's DNA methylation at metastable epialleles (MEs). We present a genome-wide screen yielding 687 MEs and track their trajectories across nine developmental stages in human in vitro fertilization embryos. MEs exhibit highly unusual methylation dynamics across the implantation-gastrulation transition, producing a large excess of intermediate methylation states, suggesting the potential for differential programming in response to external signals. Using a natural experiment in rural Gambia, we show that genomic regions sensitive to season of conception are highly enriched for MEs and show similar atypical methylation patterns. MEs are enriched for proximal enhancers and transcription start sites and are influenced by genotype. Together, these observations position MEs as distinctive epigenomic features programmed in the early embryo, sensitive to genetic and periconceptional environment, and with the potential to influence phenotype.


Subject(s)
DNA Methylation , Embryo, Mammalian/metabolism , Adult , Binding Sites , Child, Preschool , CpG Islands , Embryonic Development , Female , Fertilization in Vitro , Humans , Intestine, Small/metabolism , Liver/metabolism , Male , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Exome Sequencing
12.
Genome Biol ; 19(1): 2, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29310692

ABSTRACT

BACKGROUND: Monozygotic twins have long been studied to estimate heritability and explore epigenetic influences on phenotypic variation. The phenotypic and epigenetic similarities of monozygotic twins have been assumed to be largely due to their genetic identity. RESULTS: Here, by analyzing data from a genome-scale study of DNA methylation in monozygotic and dizygotic twins, we identified genomic regions at which the epigenetic similarity of monozygotic twins is substantially greater than can be explained by their genetic identity. This "epigenetic supersimilarity" apparently results from locus-specific establishment of epigenotype prior to embryo cleavage during twinning. Epigenetically supersimilar loci exhibit systemic interindividual epigenetic variation and plasticity to periconceptional environment and are enriched in sub-telomeric regions. In case-control studies nested in a prospective cohort, blood DNA methylation at these loci years before diagnosis is associated with risk of developing several types of cancer. CONCLUSIONS: These results establish a link between early embryonic epigenetic development and adult disease. More broadly, epigenetic supersimilarity is a previously unrecognized phenomenon that may contribute to the phenotypic similarity of monozygotic twins.


Subject(s)
Epigenesis, Genetic , Twins, Monozygotic/genetics , CpG Islands , DNA/blood , DNA Methylation , Genome, Human , Humans , Models, Genetic , Neoplasms/genetics , Twins, Dizygotic
13.
Hum Mol Genet ; 25(2): 223-32, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26566671

ABSTRACT

Understanding epigenetic differences that distinguish neurons and glia is of fundamental importance to the nascent field of neuroepigenetics. A recent study used genome-wide bisulfite sequencing to survey differences in DNA methylation between these two cell types, in both humans and mice. That study minimized the importance of cell type-specific differences in CpG methylation, claiming these are restricted to localized genomic regions, and instead emphasized that widespread and highly conserved differences in non-CpG methylation distinguish neurons and glia. We reanalyzed the data from that study and came to markedly different conclusions. In particular, we found widespread cell type-specific differences in CpG methylation, with a genome-wide tendency for neuronal CpG-hypermethylation punctuated by regions of glia-specific hypermethylation. Alarmingly, our analysis indicated that the majority of genes identified by the primary study as exhibiting cell type-specific CpG methylation differences were misclassified. To verify the accuracy of our analysis, we isolated neuronal and glial DNA from mouse cortex and performed quantitative bisulfite pyrosequencing at nine loci. The pyrosequencing results corroborated our analysis, without exception. Most interestingly, we found that gene-associated neuron vs. glia CpG methylation differences are highly conserved across human and mouse, and are very likely to be functional. In addition to underscoring the importance of independent verification to confirm the conclusions of genome-wide epigenetic analyses, our data indicate that CpG methylation plays a major role in neuroepigenetics, and that the mouse is likely an excellent model in which to study the role of DNA methylation in human neurodevelopment and disease.


Subject(s)
CpG Islands , DNA Methylation , Genome , Neuroglia/metabolism , Neurons/metabolism , Animals , Evolution, Molecular , Female , Humans , Male , Mice , Middle Aged , Sequence Analysis, DNA , Sulfites
14.
Genome Biol ; 16: 118, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26062908

ABSTRACT

BACKGROUND: Interindividual epigenetic variation that occurs systemically must be established prior to gastrulation in the very early embryo and, because it is systemic, can be assessed in easily biopsiable tissues. We employ two independent genome-wide approaches to search for such variants. RESULTS: First, we screen for metastable epialleles by performing genomewide bisulfite sequencing in peripheral blood lymphocyte (PBL) and hair follicle DNA from two Caucasian adults. Second, we conduct a genomewide screen for genomic regions at which PBL DNA methylation is affected by season of conception in rural Gambia. Remarkably, both approaches identify the genomically imprinted VTRNA2-1 as a top environmentally responsive epiallele. We demonstrate systemic and stochastic interindividual variation in DNA methylation at the VTRNA2-1 differentially methylated region in healthy Caucasian and Asian adults and show, in rural Gambians, that periconceptional environment affects offspring VTRNA2-1 epigenotype, which is stable over at least 10 years. This unbiased screen also identifies over 100 additional candidate metastable epialleles, and shows that these are associated with cis genomic features including transposable elements. CONCLUSIONS: The non-coding VTRNA2-1 transcript (also called nc886) is a putative tumor suppressor and modulator of innate immunity. Thus, these data indicating environmentally induced loss of imprinting at VTRNA2-1 constitute a plausible causal pathway linking early embryonic environment, epigenetic alteration, and human disease. More broadly, the list of candidate metastable epialleles provides a resource for future studies of epigenetic variation and human disease.


Subject(s)
Alleles , DNA Methylation , Epigenesis, Genetic , Genes, Tumor Suppressor , Genomic Imprinting , Proto-Oncogene Proteins c-cbl/genetics , Adult , Asian People/genetics , Black People/genetics , Gambia , Gene Expression Regulation, Developmental , Genetic Loci , Genome-Wide Association Study , Humans , Male , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-cbl/metabolism , Sequence Analysis, DNA , White People/genetics
15.
Nucleic Acids Res ; 42(6): e43, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24391148

ABSTRACT

Coupling bisulfite conversion with next-generation sequencing (Bisulfite-seq) enables genome-wide measurement of DNA methylation, but poses unique challenges for mapping. However, despite a proliferation of Bisulfite-seq mapping tools, no systematic comparison of their genomic coverage and quantitative accuracy has been reported. We sequenced bisulfite-converted DNA from two tissues from each of two healthy human adults and systematically compared five widely used Bisulfite-seq mapping algorithms: Bismark, BSMAP, Pash, BatMeth and BS Seeker. We evaluated their computational speed and genomic coverage and verified their percentage methylation estimates. With the exception of BatMeth, all mappers covered >70% of CpG sites genome-wide and yielded highly concordant estimates of percentage methylation (r(2) ≥ 0.95). Fourfold variation in mapping time was found between BSMAP (fastest) and Pash (slowest). In each library, 8-12% of genomic regions covered by Bismark and Pash were not covered by BSMAP. An experiment using simulated reads confirmed that Pash has an exceptional ability to uniquely map reads in genomic regions of structural variation. Independent verification by bisulfite pyrosequencing generally confirmed the percentage methylation estimates by the mappers. Of these algorithms, Bismark provides an attractive combination of processing speed, genomic coverage and quantitative accuracy, whereas Pash offers considerably higher genomic coverage.


Subject(s)
Algorithms , DNA Methylation , High-Throughput Nucleotide Sequencing/methods , Sequence Alignment/methods , Sequence Analysis, DNA/methods , Adult , Chromosome Mapping , CpG Islands , Genomics/methods , Humans , Male , Sulfites
SELECTION OF CITATIONS
SEARCH DETAIL
...