Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 195(4): 460, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36899153

ABSTRACT

Sunlight plays a key role in the nutrient cycle within streams. Streams are often piped to accommodate urban residential or commercial development for buildings, roads, and parking. This results in altered exposure to sunlight, air, and soil, subsequently affecting the growth of aquatic vegetation, reducing reaeration, and thus impairing the water quality and ecological health of streams. While the effects of urbanization on urban streams, including changing flow regimes, stream bank and bed erosion, and degraded water quality, are well understood, the effects of piping streams on dissolved oxygen (DO) concentrations, fish habitats, reaeration, photosynthesis, and respiration rates are not. We addressed this research gap by assessing the effects of stream piping on DO concentrations before and after a 565-m piped section of Stroubles Creek in Blacksburg, VA, for several days during the summer of 2021. Results indicate that the DO level decreased by approximately 18.5% during daylight hours as water flowed through the piped section of the creek. Given the optimum DO level (9.0 mg·L-1) for brook trout (Salvelinus sp.), which are native and present in a portion of Stroubles Creek, the resulting DO deficits were - 0.49 and - 1.24 mg·L-1, for the inlet and outlet, respectively, indicating a possible adverse impact from piping the stream on trout habitat. Photosynthesis and respiration rates were reduced through the piped section, primarily due to the reduced solar radiation and the resultant reduction in oxygen production from aquatic vegetation; however, the reaeration rate increased. This study can inform watershed restoration efforts, particularly decisions regarding stream daylighting with respect to potential water quality and aquatic habitat benefits.


Subject(s)
Environmental Monitoring , Rivers , Animals , Environmental Monitoring/methods , Ecosystem , Water Quality , Oxygen
2.
Sci Total Environ ; 773: 145358, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33940725

ABSTRACT

Urban developments can result in higher runoff and nutrient loadings transported to downstream receiving waterbodies. While much effort has been made recently in watershed restoration in the U.S., a lack of recent runoff quality data limits the prediction capability of urban watershed models. The objectives of this study was to fill an existing information gap on how rainfall and land uses interact and affect such loadings. This study instrumented six coastal urban catchments, each dominated by a single land use. We measured total nitrogen (TN), total phosphorus (TP), total suspended solids (TSS), total Kjeldahl Nitrogen (TKN), ortho-P, and nitrate concentrations in runoff from 30 storm events over one year from six urban land uses, namely commercial, industrial, transportation, open space, low density residential, and high density residential. Results indicated that the median event mean concentrations (EMCs) for TSS, TP, and TN were 30 (19-34), 0.31 (0.26-0.31), and 0.94 (0.73-1.25) mg L-1, respectively. TSS EMCs from the open space and industrial land uses were significantly greater than other land uses; there were positive correlations between TN concentrations and imperviousness and between TP concentrations and turf coverage. Both the amount and intensity of rainfall positively influenced TSS concentrations in runoff regardless of land use. Using the collected data, this study developed a generic equation for predicting the loading of a pollutant as a function of rainfall depth. This equation was verified by comparing its predictions with the simulations of a sufficiently-calibrated water quality model in terms of TSS, TP, and TN loadings from various land uses in another coastal catchment for a period of ten years. Average TSS, TN, and TP loadings from the catchment were estimated to be 0.86, 0.03, and 0.01 kg ha-1 cm-1, respectively.

3.
Sci Total Environ ; 671: 215-231, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-30928751

ABSTRACT

Thermally enriched runoff from urban impervious surfaces can be harmful to aquatic life; however, only limited information is available on how to mitigate these impacts at the watershed-scale. This study evaluates the effects of retrofitting an urban watershed with thermal mitigation practices (TMPs) relative to thermal toxicity thresholds for aquatic species. The Minnesota Urban Heat Export Tool (MINUHET) and Storm Water Management Model (SWMM) models were used to evaluate TMPs that help reduce temperature and total heat loads (THL) from the Stroubles Creek watershed in Blacksburg, Virginia. We used the aquatic health criteria for brook trout (Salvelinus fontinalis), the most sensitive species present downstream of the watershed, as a performance measure. TMPs included bioretention systems, methods for reducing the albedo of surfaces (cool surfaces), and increasing forest canopy. Performance metrics included Event Mean Temperature (EMT), and the Percentage of Time Temperature Exceeded the 21 °C Acute Toxicity Threshold [Percentage of Time above the Threshold (PTAT)] for brook trout; these metrics were used to quantify reductions in heat loads and temperatures. TMPs were evaluated during continuous simulation and selected storm events. Increased forest canopy alone produced the greatest reduction of stream temperature, as quantified by EMT and PTAT metrics during continuous and event-based simulations. In contrast, cool surfaces reduced THL more than any other individual TMP for the continuous simulation. A comprehensive mitigation plan (CMP) integrating all three TMPs reduced THL by 62.3%, and PTAT by approximately 12%, for the entire summer of 2015. The CMP was also applied to select storm events, during which streamflow EMT was reduced up to 9%, and PTAT was reduced nearly to zero. This study, which is the first to simulate watershed-scale TMPs for a large, complex urban area, demonstrates the application of appropriate strategies for restoring aquatic habitats in the thermally impacted Stroubles Creek.


Subject(s)
Environmental Restoration and Remediation/methods , Hot Temperature , Rivers/chemistry , Trout/physiology , Water Pollution/analysis , Animals , Models, Theoretical , Urbanization , Virginia
4.
Sci Total Environ ; 667: 166-178, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30831361

ABSTRACT

Commercial nurseries grow specialty crops for resale using a variety of methods, including containerized production, utilizing soilless substrates, on a semipervious production surface. These "container" nurseries require daily water application and continuous availability of mineral nutrients. These factors can generate significant nutrients [total nitrogen (TN), and total phosphorus (TP)] and sediment [total suspended solids (TSS)] in runoff, potentially contributing to eutrophication of downstream water bodies. Runoff is collected in large ponds known as tailwater recovery basins for treatment and reuse or discharge to receiving streams. We characterized TSS, TN, and TP, electrical conductivity (EC), and pH in runoff from a 5.2 ha production portion of a 200-ha commercial container nursery during storm and irrigation events. Results showed a direct correlation between TN and TP, runoff and TSS, TN and EC, and between flow and pH. The Storm Water Management Model (SWMM) was used to characterize runoff quantity and quality of the site. We found during irrigation events that simulated event mean concentrations (EMCs) of TSS, TN, and TP were 30, 3.1 and 0.35 mg·L-1, respectively. During storm events, TSS, TN and TP EMCs were 880, 3.7, and 0.46 mg·L-1, respectively. EMCs of TN and TP were similar to that of urban runoff; however, the TSS EMC from nursery runoff was 2-4 times greater. The average loading of TSS, TN and TP during storm events was approximately 900, 35 and 50 times higher than those of irrigation events, respectively. Based on a 10-year SWMM simulation (2008-2018) of runoff from the same nursery, annual TSS, TN and TP load per ha during storm events ranged from 9230 to 13,300, 65.8 to 94.0 and 9.00 to 12.9 kg·ha-1·yr-1, respectively. SWMM was able to characterize runoff quality and quantity reasonably well. Thus, it is suitable for characterizing runoff loadings from container nurseries.

5.
Environ Sci Pollut Res Int ; 26(1): 501-513, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30406592

ABSTRACT

The passengers inside vehicles could be exposed to high levels of air pollutants particularly while driving on highly polluted and congested traffic roadways. In order to study such exposure levels and its relation to the cabin ventilation condition, a monitoring campaign was conducted to measure the levels inside the three most common types of vehicles in Tehran, Iran (a highly air polluted megacity). In this regard, carbon monoxide (CO) and particulate matter (PM) were measured for various ventilation settings, window positions, and vehicle speeds while driving on the Resalat Highway and through the Resalat Tunnel. Results showed on average in-cabin exposure to particle number and PM10 for the open windows condition was seven times greater when compared to closed windows and air conditioning on. When the vehicle was passing through the tunnel, in-cabin CO and particle number increased 100 and 30%, respectively, compared to driving on highway. Air exchange rate (AER) is a significant factor when evaluating in-cabin air pollutants level. AER was measured and simulated by a model developed through a Monte Carlo analysis of uncertainty and considering two main affecting variables, vehicle speed and fan speed. The lowest AER was 7 h-1 for the closed window and AC on conditions, whereas the highest AER was measured 70 h-1 for an open window condition and speed of 90 km h-1. The results of our study can assist policy makers in controlling in-cabin pollutant exposure and in planning effective strategies for the protection of public health.


Subject(s)
Air Pollution, Indoor/statistics & numerical data , Environmental Exposure/statistics & numerical data , Models, Chemical , Vehicle Emissions/analysis , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/statistics & numerical data , Air Pollution, Indoor/analysis , Carbon Monoxide/analysis , Environmental Exposure/analysis , Environmental Monitoring/methods , Humans , Iran , Particulate Matter/analysis , Ventilation/methods
6.
J Environ Manage ; 226: 457-475, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30145502

ABSTRACT

Urban development increases runoff temperatures from buildings and pavement, which can be harmful to aquatic life. However, our ability to predict runoff temperature as a function of land use is limited. This paper explores available tools for simulating runoff temperature with respect to brook trout (Salvelinus sp.), a sensitive species. The Minnesota Urban Heat Export Tool (MINUHET) and the Storm Water Management Model (SWMM) were applied to a 14.1 km2 portion of the Stroubles Creek watershed near Blacksburg, Virginia for two summers. Streamflow, water temperature, and weather data were acquired from the Virginia Tech StREAM Lab (Stream Research, Education, and Management) monitoring stations. SWMM and MINUHET were calibrated and validated for streamflow, and stream temperature, respectively. The models were sensitive to imperviousness (SWMM-predicted streamflow) and dew point temperature (MINUHET-predicted water temperature). While the models output time-step was 15 min, the model performance in simulating streamflow was evaluated using Nash-Sutcliffe Efficiency (NSE) on hourly time-steps. NSE values were 0.67 and 0.65 for SWMM and 0.62 and 0.57 for MINUHET during the calibration and validation periods, respectively, indicating that SWMM performed better than MINUHET in streamflow simulation. Stream temperatures were simulated using MINUHET with NSE value of 0.58 for the validation period, demonstrating a satisfactory simulation of water temperature. Since SWMM is not capable of stream temperature simulation beyond simple mixing. Hydrologic and thermal outputs from SWMM and MINUHET were combined in a hybrid approach that emphasized the strength of each respective model, i.e. SWMM for runoff and streamflow and MINUHET for water temperature. Heat loads were simulated using the MINUHET and the Hybrid models; the Hybrid model (0.56) had a greater NSE than MINUHET (0.45) alone. MINUHET predictions indicated water temperatures would exceed the trout toxicity threshold of 21 °C during 39% and 38% of calibration and validation periods, respectively. Since the observed temperature exceeded the toxicity threshold 59% and 53% of the time for the calibration and validation periods, respectively, MINUHET was not a conservative predictor of the duration of temperatures exceeding the toxicity threshold value.


Subject(s)
Models, Theoretical , Rivers , Urbanization , Animals , Minnesota , Virginia , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...